Skip to main content
Log in

Chromosomal manipulation in Senegalese sole (Solea senegalensis Kaup, 1858): induction of triploidy and gynogenesis

  • Animal Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

In this study we have developed protocols for induced triploidy and gynogenesis of Senegalese sole (Solea senegalensis), a promising flatfish species for marine aquaculture, in order to: 1) identify the sex-determination mechanism; and 2) to improve its production by generating a) sterile fish, avoiding problems related with sexual maturation, and b) all-female stocks, of higher growth rate. Triploidy was induced by means of a cold shock. Gynogenesis was induced by activating eggs with UV-irradiated sperm, and to prompt diploid gynogenesis, a cold-shock step was also used. Ploidy of putative triploid larvae and gynogenetic embryos were determined by means of karyotyping and microsatellite analysis. Haploid gynogenetic embryos showed the typical “haploid syndrome”. As expected, triploid and gynogenetic groups showed lower fertilization, hatching, and survival rates than in the diploid control group. Survival rate, calculated 49 days after hatching, for haploid and diploid gynogenetic groups was similar to those observed in other fish species (0 % and 62.5 %, respectively), whereas triploids showed worse values (45 %). Sex was determined macroscopically and by histological procedures, revealing that all the diploid gynogenetic individuals were females. In conclusion, we have successfully applied chromosomal-manipulation techniques in the flatfish species Senegalese sole in order to produce triploid, haploid, and diploid gynogenetic progenies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3

Similar content being viewed by others

References

  • Arai K (2001) Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197:205–228

    Article  CAS  Google Scholar 

  • Baynes SM, Howell BR, Hughes V (2004) Sex-determination in marine flatfish. Extended abstract of a poster presentation in: biotechnologies for quality. Eur Aquac Soc Spec Publ 34(148):149

    Google Scholar 

  • Bouza C, Hermida M, Pardo BG et al (2007) A microsatellite genetic map of the turbot (Scophthalmus maximus). Genetics 177:2457–2467

  • Bouza C, Hermida M, Pardo BG etal (2012) An expressed sequence tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts. BMC Genet 13:54

  • Cal RM, Gómez J, Castro C etal (2002) Production of haploid and diploid gynogenetic turbot (Scophthalmus maximus L.). Spec Publ Eur Aquac Soc 32:179–180

  • Cal RM, Vidal S, Gómez C etal (2006a) Growth and gonadal development in diploid and triploid turbot (Scophthalmus maximus). Aquaculture 251:99–108

  • Cal RM, Vidal S, Martínez P etal (2006b) Growth and gonadal development of gynogenetic diploid Scophthalmus maximus. J Fish Biol 68:401–413

  • Cañavate JP, Fernández-Díaz C (1999) Influence of co-feeding larvae with live and inert diets on weaning the sole Solea senegalensis onto commercial dry feeds. Aquaculture 174:255–263

    Article  Google Scholar 

  • Castro J, Bouza C, Sánchez L etal (2003) Gynogenesis assessment using microsatellite genetic markers in turbot (Scophthalmus maximus). Mar Biotechnol 5:584–92

  • Chen S, Tian Y, Yang J etal (2009) Artificial gynogenesis and sex determination in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol 11:243–251

  • De la Herrán R, Robles F, Navas JI et al (2008) A highly accurate, single PCR reaction for parentage assignment in Senegal sole based on eight informative microsatellite loci. Aquacult Res 39:1169–1174

    Article  Google Scholar 

  • Don J, Avtalion RR (1988) Production of F1 and F2 diploid gynogenetic tilapias and analysis of the “Hertwig curve” obtained using ultraviolet irradiated sperm. Theor Appl Genet 76:253–259

    Article  CAS  PubMed  Google Scholar 

  • Felip A, Zanuy S, Carrillo M, Piferrer F (2001) Induction of triploidy and gynogenesis in teleost fish with emphasis on marine species. Genetica 111:175–195

    Article  CAS  PubMed  Google Scholar 

  • Felip A, Zanuy S, Carrillo M (2006) Comparative analysis of growth performance and sperm motility between precocious and non-precocious males in the European sea bass (Dicentrarchus labrax, L.). Aquaculture 256:570–578

    Article  Google Scholar 

  • Fopp-Bayat D, Jankun M, Woznicki P (2007) Viability of diploid and triploid hybrids of Siberia sturgeon and bester. Aquacult Res 38:1301–1304

    Article  Google Scholar 

  • Funes V, Zuasti E, Catanese G etal (2004) Isolation and characterization of ten microsatellite loci for Senegal sole (Solea senegalensis Kaup). Mol Ecol Notes 4:339–341

  • Garrido-Ramos MA, Jamilena M, Lozano R etal (1994) Cloning and characterization of a fish centromeric satellite DNA. Cytogenet Cell Genet 65:233–237

  • Haffray P, Lebègue E, Jeu S etal (2009) Genetic determination and temperature effects on turbot scophthalmus maximus sex differentiation: an investigation using steroid sex-inverted males and females. Aquaculture 294:30–36

  • Havelka M, Hulák M, Ráb P etal (2014) Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet 15:5

  • Hendry C, Martin-Robichaud D, Benfey T (2003) Hormonal sex reversal of Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 219:769–781

  • Holmefjord I, Refstie T (1997) Induction of triploidy in Atlantic halibut by temperature shocks. Aquacult Int 5:169–173

    Google Scholar 

  • Howell BR, Baynes SM, Thompson D (1995) Progress towards the identification of the sex determining mechanism of the Solea (L.) by induction of diploid gynogenesis. Aqualcult Res 26:135–140

    Article  Google Scholar 

  • Ji X-S, Chen S-L, Liao X-L etal (2009) Microsatellite-centromere mapping in Cynoglossus semilaevis using gynogenetic diploid families produced by the use of homologous and non-homologous sperm. J Fish Biol 75:422–434

  • Leary RF, Allendorf FW, Knudsen KL, Thorgaard GH (1985) Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbow trout. Heredity 54(Pt 2):219–225

    Article  PubMed  Google Scholar 

  • Lincoln R (1981) Sexual maturation in triploid male plaice (Pleuronectes platessa) and plaice x flounder (Platichthys flesus). J Fish Biol 19:499–507

    Article  Google Scholar 

  • Luckenbach J, Godwin J, Daniels HV etal (2004) Induction of diploid gynogenesis in southern flounder (Paralichthys lethostigma) with homologous and heterologous sperm. Aquaculture 237:499–516

  • Martínez P, Hermida M, Pardo BG etal (2008) Centromere-linkage in the turbot (Scophthalmus maximus) through half-tetrad analysis in diploid meiogynogenetics. Aquaculture 280:81–88

  • Martínez P, Bouza C, Hermida M etal (2009) Identification of the major sex-determining region of turbot (Scophthalmus maximus). Genetics 183:1443–1452

  • Molina-Luzón MJ, Hermida M, Navajas-Pérez R et al (2014) First haploid genetic map based on microsatellite markers in Senegalese sole (Solea senegalensis Kaup, 1858). Mar Biotechnol doi:10.1007/s10126-014-9589-5

  • Piferrer F (2007) Determinación y diferenciación sexual de los peces y su control en acuicultura en la Reproducción de los peces: aspectos básicos y su aplicación en Acuicultura. Carrillo M (ed) Observatorio Español de Acuicultura, Madrid

  • Piferrer F, Cal RM, Alvárez-Blázquez L etal (2000) Induction of triploidy in the turbot (Scophthalmus maximus): I. Ploidy determination and the effects of cold shocks. Aquaculture 188:79–90

  • Piferrer F, Cal RM, Gómez C etal (2003) Induction of triploidy in the turbot (Scophthalmus maximus): II. Effects of cold shock timing and induction of triploidy in a large volume of eggs. Aquaculture 220:821–831

  • Piferrer F, Cal RM, Alvárez-Blázquez B etal (2004) Induction of gynogenesis in the turbot (Scophthalmus maximus). Effects of UV irradiation on sperm motility, the Hertwig effect and viability during the first 6 months of age. Aquaculture 238:403–419

  • Piferrer F, Felip A, Cal RM (2009) Inducción de la triploidía y la ginogénesis para la obtención de peces estériles y poblaciones monosexo en acuicultura. In: Martínez P, Figueras A (eds)Genética y Genómica en Acuicultura I. Publicaciones científicas y tecnológicas Observatorio Español de Acuicultura, Madrid, pp 403–472

    Google Scholar 

  • Piferrer F, Ribas L, Díaz N (2012) Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. Mar Biotechnol 14:591–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purdom C (1969) Radiation-induced gynogenesis and androgenesis in fish. Heredity 24:431–444

    Article  CAS  PubMed  Google Scholar 

  • Purdom C (1972) Induced polyploidy in plaice (Pleuronectes platessa) and its hybrid with the flounder (Platichthys flesus). Heredity 29:11–24

    Article  CAS  PubMed  Google Scholar 

  • Rana KJ, McAndrew BJ (1989) The viability of cryopreserved tilapia spermatozoa. Aquaculture 76:335–345

    Article  Google Scholar 

  • Reid DP, Smith CA, Rommens M etal (2007) A genetic linkage map of Atlantic halibut (Hippoglossus hippoglossus L.). Genetics 177:1193–1205

  • Tabata K (1991) Studies on the gynogenesis in hirame paralichthys olivaceus. XI. Induction of gynogenetic diploid males and presumption of Sex determination mechanisms in the hirame paralichthys olivaceus. Nippon Suisan Gakkaishi 57:845–850

    Article  Google Scholar 

  • Thorgaard GH (1983) Chromosome set manipulation and sex control in fish. In: Hoar WS, Randall DJ, Donaldson EM (eds) Fish physiology Vol. IXpart B. Academic, New York, pp 405–43

    Google Scholar 

  • Thorgaard GH, Bailey GS, Williams D etal (2002) Status and opportunities for genomics research with rainbow trout. Comp Biochem Physiol B: Biochem Mol Biol 133:609–64

  • Tvedt HB, Benfey TJ, Martin-Robichaud DJ etal (2006) Gynogenesis and sex determination in Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 252:573–583

  • Yamamoto E (1992) Application of gynogenesis and triploidy in hirame (Paralichthys olivaceus) breeding. Fish Genet Breeding Sci 18:3–23

    Google Scholar 

  • Yamamoto E (1999) Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture 173:235–246

    Article  Google Scholar 

  • Zanuy S, Carrillo M, Felip A etal (2001) Genetic, hormonal and environmental approaches for the control of reproduction in the European sea bass (Dicentrarchus labrax L.). Aquaculture 202:187–203

Download references

Acknowledgments

This work has been supported by the Spanish Ministry of Science and Innovation (AGL2009-11872), Pleurogene-Flatfish Genomics and the Consolider-Ingenio AQUAGENOMICS Project (CSD2007-00002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Jesús Molina-Luzón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina-Luzón, M.J., López, J.R., Robles, F. et al. Chromosomal manipulation in Senegalese sole (Solea senegalensis Kaup, 1858): induction of triploidy and gynogenesis. J Appl Genetics 56, 77–84 (2015). https://doi.org/10.1007/s13353-014-0233-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-014-0233-x

Keywords

Navigation