Journal of Applied Genetics

, Volume 54, Issue 3, pp 265–269 | Cite as

Molecular cytogenetic characterisation of Salix viminalis L. using repetitive DNA sequences

  • Anna Viktória Németh
  • Dénes Dudits
  • Márta Molnár-Láng
  • Gabriella Linc
Plant Genetics • Short Communication


Salix viminalis L. (2n = 38) is a diploid dicot species belonging to the Salix genus of the Salicaceae family. This short-rotation woody crop is one of the most important renewable bioenergy resources worldwide. In breeding for high biomass productivity, limited knowledge is available on the molecular cytogenetics of willow, which could be combined with genetic linkage mapping. The present paper describes the adaptation of a fluorescence in situ hybridisation (FISH) protocol as a new approach to analyse the genomic constitution of Salix viminalis using the heterologous DNA clones pSc119.2, pTa71, pTa794, pAs1, Afa-family, pAl1, HT100.3, ZCF1 and the GAA microsatellite marker. Three of the nine probes showed unambiguous signals on the metaphase chromosomes. FISH analysis with the pTa71 probe detected one major 18S-5.8S-26S rDNA locus on the short arm of one chromosome pair; however, the pTa794 rDNA site was not visible. One chromosome pair showed a distinct signal around the centromeric region after FISH with the telomere-specific DNA clone HT100.3. Two chromosome pairs were found to have pAs1 FISH signals, which represent a D-genome-specific insert from Aegilops tauschii. Based on the FISH study, a set of chromosomes with characteristic patterns is presented, which could be used to establish the karyotype of willow species.


FISH Genome constitution Repetitive DNA clones Salix viminalis 



This study was funded by Kreátor 2005 Ltd. (Budapest), TÁMOP-4.2.2/B-10/1-2012-0025) and a János Bolyai Research Scholarship from HAS to G.L. The authors thank Barbara Harasztos for revising the manuscript linguistically.


  1. Anamthawat-Jónsson K (2003) Preparation of chromosomes from plant leaf meristems for karyotype analysis and in situ hybridization. Methods Cell Sci 25:91–95PubMedCrossRefGoogle Scholar
  2. Barcaccia G, Meneghetti S, Albertini E, Triest L, Lucchin M (2003) Linkage mapping in tetraploid willows: segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba × Salix fragalis interspecific hybrids. Heredity 90:169–280PubMedCrossRefGoogle Scholar
  3. Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560PubMedCrossRefGoogle Scholar
  4. Berlin S, Lagercrantz U, von Arnold S, Öst T, Rönnberg-Wästljung AC (2010) High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus. Genomics 11:129PubMedGoogle Scholar
  5. Brown GR, Amarasinghe V, Kiss G, Carlson JE (1993) Preliminary karyotype and chromosomal localization of ribosomal DNA sites in white spruce using fluorescence in situ hybridization. Genome 36:310–316PubMedCrossRefGoogle Scholar
  6. Cheng Z-J, Murata M (2003) A centromeric tandem repeat family originating from a part of ty3/gypsy-retroelement in wheat and its relatives. Genetics 164:665–672PubMedGoogle Scholar
  7. Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, de Jong JH (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9:421–430PubMedCrossRefGoogle Scholar
  8. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885PubMedCrossRefGoogle Scholar
  9. Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865PubMedCrossRefGoogle Scholar
  10. Hanley S, Barker JHA, Van Ooijen JW, Aldam C, Harris SL, Åhman I, Larsson S, Karp A (2002) A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theor Appl Genet 105:1087–1096PubMedCrossRefGoogle Scholar
  11. Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M, Pearson L, Nehra N (2009) Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell Dev Biol Plant 45:619–629PubMedCrossRefGoogle Scholar
  12. Houben A, Orford SJ, Timmis JN (2005) In situ hybridization to plant tissues and chromosomes. In Situ Hybridization Protoc 326:203–218CrossRefGoogle Scholar
  13. Islam-Faridi MN, Nelson CD, DiFazio SP, Gunter LE, Tuskan GA (2009a) Cytogenetic analysis of Populus trichocarpa—ribosomal DNA, telomere repeat sequence, and marker-selected BACs. Cytogenet Genome Res 125:74–80PubMedCrossRefGoogle Scholar
  14. Islam-Faridi N, Nelson CD, Sisco PH, Kubisiak LT, Hebard FV, Paris RL, Phillips RL (2009b) Cytogenetic analysis of American chestnut (Castanea dentata) using fluorescent in situ hybridization. Acta Hort 844:207–210, ISHSGoogle Scholar
  15. Juchimiuk-Kwasniewska J, Brodziak L, Maluszynska J (2011) FISH in analysis of gamma ray-induced micronuclei formation in barley. J Appl Genetics 52:23–29CrossRefGoogle Scholar
  16. Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I (2011) Genetic improvement of willow for bioenergy and biofuels. J Integr Plant Biol 53:151–165PubMedCrossRefGoogle Scholar
  17. Kondor A (2007) Adatok az „energia fűz” (Salix viminalis L.) gyomszabályozási lehetőségeiről. Agrártudományi Közlemények 26:108–112Google Scholar
  18. Linc G, Friebe BR, Kynast RG, Molnár-Láng M, Köszegi B, Sutka J, Gill BS (1999) Molecular cytogenetic analysis of Aegilops cylindrica host. Genome 42:497–503PubMedGoogle Scholar
  19. Linc G, Sepsi A, Molnár-Láng M (2012) A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongata E genome. Cytogenet Genome Res 136:138–144PubMedCrossRefGoogle Scholar
  20. Martinez-Zapater JM, Estelle MA, Somerville CR (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204:417–423CrossRefGoogle Scholar
  21. Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL, Moyzis RK (1990) Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99:3–10PubMedCrossRefGoogle Scholar
  22. Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102:88–95CrossRefGoogle Scholar
  23. Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38:479–486PubMedCrossRefGoogle Scholar
  24. Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci USA 64:600–604PubMedCrossRefGoogle Scholar
  25. Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593PubMedCrossRefGoogle Scholar
  26. Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 76:78–81Google Scholar
  27. Rayburn AL, Gill BS (1986) Molecular identification of the D-genome chromosomes of wheat. J Hered 77:253–255Google Scholar
  28. Rayburn AL, Gill BS (1987) Isolation of D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep 4:102–109CrossRefGoogle Scholar
  29. Ruiz-Herrera A, Nergadze SG, Santagostino M, Giulotto E (2008) Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet Genome Res 122:219–228PubMedCrossRefGoogle Scholar
  30. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, Ito S, Ito T, Ito Y, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song J, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong H, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang J, Gojobori T (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316PubMedCrossRefGoogle Scholar
  31. Tsarouhas V, Gullberg U, Lagercrantz U (2002) An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor Appl Genet 105:277–288PubMedCrossRefGoogle Scholar
  32. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  33. Vrána J, Kubaláková M, Simková H, Číhalíkovái J, Lysák MA, Dolezel J (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041PubMedGoogle Scholar
  34. Zhong X-B, Fransz PF, Wennekes-van Eden J, Ramanna MS, van Kammen A, Zabel P, de Jong H (1998) FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J 13:507–517PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2013

Authors and Affiliations

  • Anna Viktória Németh
    • 1
  • Dénes Dudits
    • 1
  • Márta Molnár-Láng
    • 2
  • Gabriella Linc
    • 2
  1. 1.Institute of Plant Biology, Biological Research CentreHungarian Academy of SciencesSzegedHungary
  2. 2.Agricultural Institute, Centre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary

Personalised recommendations