Skip to main content

Advertisement

Log in

Cloning, expression, and evolutionary analysis of α-gliadin genes from Triticum and Aegilops genomes

  • Plant Genetics ∙ Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Fifteen novel α-gliadin genes were cloned and sequenced from Triticum and related Aegilops genomes by allele-specific polymerase chain reaction (AS-PCR). Sequence comparison displayed high diversities in the α-gliadin gene family. Four toxic epitopes and glutamine residues in the two polyglutamine domains facilitated these α-gliadins to be assigned to specific chromosomes. Five representative α-gliadin genes were successfully expressed in Escherichia coli, and their amount reached a maximum after 4 h induced by isopropyl-β-D-thiogalactoside (IPTG), indicating a high level of expression under the control of T7 promoter. The transcriptional expression of α-gliadin genes during grain development detected by quantitative real-time polymerase chain reaction (qRT-PCR) showed a similar up–down regulation pattern in different genotypes. A neighbor-joining tree constructed with both full-open reading frame (ORF) α-gliadin genes and pseudogenes further revealed the origin and phylogenetic relationships among Triticum and related Aegilops genomes. The evolutionary analysis demonstrated that α-gliadin genes evolved mainly by synonymous substitutions under strong purifying selection during the evolutionary process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altenbach SB, Kothari KM (2004) Transcript profiles of genes expressed in endosperm tissue are altered by high temperature during wheat grain development. J Cereal Sci 40:115–126

    Article  CAS  Google Scholar 

  • Altenbach SB, Kothari KM (2007) Omega gliadin genes expressed in Triticum aestivum cv. Butte 86: effects of post-anthesis fertilizer on transcript accumulation during grain development. J Cereal Sci 46:169–177

    Article  CAS  Google Scholar 

  • An XL, Zhang Q, Yan YM, Li QY, Zhang YZ, Wang AL, Pei Y, Tian J, Wang H, Hsam SLK, Zeller FJ (2006) Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theor Appl Genet 113:383–395

    Article  PubMed  CAS  Google Scholar 

  • Anderson OD, Greene FC (1997) The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59–65

    Article  CAS  Google Scholar 

  • Anderson OD, Litts JC, Gautier MF, Greene FC (1984) Nucleic acid sequence and chromosome assignment of a wheat storage protein gene. Nucleic Acids Res 12:8129–8144

    Article  PubMed  CAS  Google Scholar 

  • Battais F, Mothes T, Moneret-Vautrin DA, Pineau F, Kanny G, Popineau Y, Bodinier M, Denery-Papini S (2005) Identification of IgE-binding epitopes on gliadins for patients with food allergy to wheat. Allergy 60:815–821

    Article  PubMed  CAS  Google Scholar 

  • Biagi F, Zimmer KP, Thomas PD, Ellis HJ, Ciclitira PJ (1999) Is gliadin mispresented to the immune system in coeliac disease? A hypothesis. QJM 92:119–122

    Article  PubMed  CAS  Google Scholar 

  • Bittner C, Grassau B, Frenzel K, Baur X (2008) Identification of wheat gliadins as an allergen family related to baker’s asthma. J Allergy Clin Immunol 121:744–749

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Xu C, Chen M, Wang Y, Xia G (2008) A new alpha-gliadin gene family for wheat breeding: somatic introgression line II-12 derived from Triticum aestivum and Agropyron elongatum. Mol Breed 22:675–685

    Article  CAS  Google Scholar 

  • Dvořák J, Akhunov ED, Akhunov AR, Deal KR, Luo MC (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol 23:1386–1396

    Article  PubMed  Google Scholar 

  • Fu Z, Schroeder MJ, Shabanowitz J, Kaldis P, Togawa K, Rustgi AK, Hunt DF, Sturgill TW (2005) Activation of a nuclear Cdc2-related kinase within a mitogen-activated protein kinase-like TDY motif by autophosphorylation and cyclin-dependent protein kinase-activating kinase. Mol Cell Biol 25:6047–6064

    Article  PubMed  CAS  Google Scholar 

  • Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies? J Exp Bot 55:1445–1454

    Article  PubMed  CAS  Google Scholar 

  • Galili G (1989) Heterologous expression of a wheat high molecular weight glutenin gene in Escherichia coli. Proc Natl Acad Sci USA 86:7756–7760

    Article  PubMed  CAS  Google Scholar 

  • Gu YQ, Crossman C, Kong XY, Luo MC, You FM, Coleman-Derr D, Dubcovsky J, Anderson OD (2004) Genomic organization of the complex alpha-gliadin gene loci in wheat. Theor Appl Genet 109:648–657

    Article  PubMed  CAS  Google Scholar 

  • Harberd NP, Bartels D, Thompson RD (1985) Analysis of the gliadin multigene loci in bread wheat using nullisomic–tetrasomic lines. Mol Gen Genet 198:234–242

    Article  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276

    Article  PubMed  CAS  Google Scholar 

  • Koning F (2003) The molecular basis of celiac disease. J Mol Recognit 16:333–336

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ma W, Gao L, Zhang Y, Wang A, Ji K, Wang K, Appels R, Yan Y (2008) A novel chimeric low-molecular-weight glutenin subunit gene from the wild relatives of wheat Aegilops kotschyi and Ae. juvenalis: evolution at the Glu-3 loci. Genetics 180:93–101

    Article  PubMed  CAS  Google Scholar 

  • Li G, Zhang T, Wei P, Jia J, Yang Z (2010a) Sequence analysis of α-gliadin genes from Aegilops tauschii native to China. Asian J Agric Sci 2:128–135

    Google Scholar 

  • Li XH, Wang K, Wang SL, Gao LY, Xie XX, Hsam SLK, Zeller FJ, Yan YM (2010b) Molecular characterization and comparative transcriptional analysis of LMW-m-type genes from wheat (Triticum aestivum L.) and Aegilops species. Theor Appl Genet 121:845–856

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wang SL, Li SS, Ge P, Li XH, Ma WJ, Zeller FJ, Hsam SLK, Yan Y (2012) Variations and classification of toxic epitopes related to celiac disease among α-gliadin genes from four Aegilops genomes. Genome 55:513–521

    Article  PubMed  CAS  Google Scholar 

  • Ma ZC, Wei YM, Yan ZH, Zheng YL (2007) Characterization of α-gliadin genes from diploid wheats and the comparative analysis with those from polyploid wheats. Genetika 43:1534–1541

    PubMed  CAS  Google Scholar 

  • Masci S, D’Ovidio R, Lafiandra D, Kasarda DD (1998) Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol 118:1147–1158

    Article  PubMed  CAS  Google Scholar 

  • Metakovsky EV, Annicchiarico P, Boggini G, Pogna NE (1997) Relationship between gliadin alleles and dough strength in Italian bread wheat cultivars. J Cereal Sci 25:229–236

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Okita TW, Cheesbrough V, Reeves CD (1985) Evolution and heterogeneity of the alpha/beta-type and gamma-type gliadin DNA sequences. J Biol Chem 260:8203–8213

    PubMed  CAS  Google Scholar 

  • Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11

    Article  PubMed  Google Scholar 

  • Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol 38:141–153

    Article  CAS  Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82

    Article  PubMed  CAS  Google Scholar 

  • Pistón F, Dorado G, Martín A, Barro F (2004) Cloning and characterization of a gamma-3 hordein mRNA (cDNA) from Hordeum chilense (Roem. et Schult.). Theor Appl Genet 108:1359–1365

    Article  PubMed  Google Scholar 

  • Pistón F, Martín A, Dorado G, Barro F (2005) Cloning and molecular characterization of B-hordeins from Hordeum chilense (Roem. Et Schult.). Theor Appl Genet 111:551–560

    Article  PubMed  Google Scholar 

  • Pistón F, Dorado G, Martín A, Barro F (2006) Cloning of nine γ-gliadin mRNAs (cDNAs) from wheat and the molecular characterization of comparative transcript levels of γ-gliadin subclasses. J Cereal Sci 43:120–128

    Article  Google Scholar 

  • Qi PF, Wei YM, Chen GY, Jiang QT, Liu YX, Li W, Dai SF, Zheng YL (2012) Development of chromosome 6D-specific markers for α-gliadin genes and their use in assessing dynamic changes at the Gli-2 loci. Mol Breed 29:199–208

    Article  CAS  Google Scholar 

  • Reeves CD, Okita TW (1987) Analyses of α/β-type gliadin genes from diploid and hexaploid wheats. Gene 52:257–266

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG, Lafiandra D (2003) Genetics of wheat gluten proteins. Adv Genet 49:111–184

    Article  PubMed  CAS  Google Scholar 

  • Tamás L, Shewry PR (2006) Heterologous expression and protein engineering of wheat gluten proteins. J Cereal Sci 43:259–274

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • van de Wal Y, Kooy YM, van Veelen PA, Peña SA, Mearin LM, Molberg Ø, Lundin KE, Sollid LM, Mutis T, Benckhuijsen WE, Drijfhout JW, Koning F (1998) Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. Proc Natl Acad Sci USA 95:10050–10054

    Article  PubMed  Google Scholar 

  • van Herpen TW, Goryunova SV, van der Schoot J, Mitreva M, Salentijn E, Vorst O, Schenk MF, van Veelen PA, Koning F, van Soest LJM, Vosman B, Bosch D, Hamer RJ, Gilissen LJ, Smulders MJM (2006) Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1

    Article  PubMed  Google Scholar 

  • Wang AL, Gao LY, Li XH, Zhang YZ, He ZH, Xia XC, Zhang Y, Yan YM (2008) Characterization of two 1D-encoded omega-gliadin subunits closely related to dough strength and pan bread-making quality in common wheat (Triticum aestivum L.). J Cereal Sci 47:528–535

    Article  CAS  Google Scholar 

  • Wang S, Li X, Wang K, Wang X, Li S, Zhang Y, Guo G, Zeller FJ, Hsam SLK, Yan Y (2011) Phylogenetic analysis of C, M, N, and U genomes and their relationships with Triticum and other related genomes as revealed by LMW-GS genes at Glu-3 loci. Genome 54:273–284

    Article  PubMed  Google Scholar 

  • Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24:115–119

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Wang C, Wang K, Wang S, Li X, Zhang Z, Ma W, Yan Y (2010) Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.). Theor Appl Genet 121:1239–1251

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ (2003) Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica 130:377–385

    Article  CAS  Google Scholar 

  • Yan YM, Jiang Y, An XL, Pei YH, Li XH, Zhang YZ, Wang AL, He Z, Xia X, Bekes F, Ma W (2009) Cloning, expression and functional analysis of HMW glutenin subunit 1By8 gene from Italy pasta wheat (Triticum turgidum L. ssp. durum). J Cereal Sci 50:398–406

    Article  CAS  Google Scholar 

  • Zhang YZ, Li XH, Wang AL, An XL, Zhang Q, Pei YH, Gao LY, Ma WJ, Appels R, Yan YM (2008) Novel x-type high-molecular-weight glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics 178:23–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by grants from the Chinese Ministry of Science and Technology (2009CB118303), the National Natural Science Foundation of China (31271703, 31101145), and the National Key Projects for Transgenic Crops of China (2011ZX08009-003-004, 2011ZX08002-004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X.-H. Li or Y.-M. Yan.

Additional information

J. Li, S.-L. Wang, and M. Cao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Wang, SL., Cao, M. et al. Cloning, expression, and evolutionary analysis of α-gliadin genes from Triticum and Aegilops genomes. J Appl Genetics 54, 157–167 (2013). https://doi.org/10.1007/s13353-013-0139-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-013-0139-z

Keywords

Navigation