Skip to main content

Advertisement

Log in

Identification of chromosomal locations associated with tail biting and being a victim of tail-biting behaviour in the domestic pig (Sus scrofa domesticus)

  • Animal Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The objective of this study was to identify loci associated with tail biting or being a victim of tail biting in Norwegian crossbred pigs using a genome-wide association study with PLINK case–control analysis. DNA was extracted from hair or blood samples collected from 98 trios of crossbred pigs located across Norway. Each trio came from the same pen and consisted of one pig observed to initiate tail biting, one pig which was the victim of tail biting and a control pig which was not involved in either behaviour. DNA was genotyped using the Illumina PorcineSNP60 BeadChip whole-genome single-nucleotide polymorphism (SNP) assay. After quality assurance filtering, 53,952 SNPs remained comprising 74 animals (37 pairs) for the tail biter versus control comparison and 53,419 SNPs remained comprising 80 animals (40 pairs) for the victim of tail biting versus control comparison. An association with being a tail biter was observed on Sus scrofa chromosome 16 (SSC16; p = 1.6 × 10−5) and an unassigned chromosome (p = 3.9 × 10−5). An association with being the victim of tail biting was observed on Sus scrofa chromosomes 1 (SSC1; p = 4.7 × 10−5), 9 (SSC9; p = 3.9 × 10−5), 18 (SSC18; p = 7 × 10−5 for 9,602,511 bp, p = 3.4 × 10−5 for 9,653,881 bp and p = 5.3 × 10−5 for 29,577,783 bp) and an unassigned chromosome (p = 6.1 × 10−5). An r 2 = 0.96 and a D′ = 1 between the two SNPs at 9 Mb on SSC18 indicated extremely high linkage disequilibrium, suggesting that these two markers represent a single locus. These results provide evidence of a moderate genetic association between the propensity to participate in tail-biting behaviour and the likelihood of becoming a victim of this behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Athanasiu L, Mattingsdal M, Kähler AK, Brown A, Gustafsson O, Agartz I, Giegling I, Muglia P, Cichon S, Rietschel M, Pietiläinen OPH, Peltonen L, Bramon E, Collier D, St. Clair D, Sigurdsson E, Petursson H, Rujescu D, Melle I, Steen VM, Djurovic S, Andreassen OA (2010) Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort. J Psychiatr Res 44:748–753

    Article  PubMed  Google Scholar 

  • Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296

    Article  PubMed  CAS  Google Scholar 

  • Ball HA, Arseneault L, Taylor A, Maughan B, Caspi A, Moffitt TE (2008) Genetic and environmental influences on victims, bullies and bully-victims in childhood. J Child Psychol Psyc 49:104–112

    Article  Google Scholar 

  • Barnes JC, Boutwell BB, Fox KA (2011) The effect of gang membership on victimization: a behavioral genetic explanation. Youth Viol Juvenile Justice. doi:10.1177/1541204011429948

  • Beaver KM, Boutwell BB, Barnes JC, Cooper JA (2009) The biosocial underpinnings to adolescent victimization: results from a longitudinal sample of twins. Youth Viol Juvenile Justice 7:223–238

    Article  Google Scholar 

  • Biscarini F, Bovenhuis H, van der Poel J, Rodenburg TB, Jungerius AP, van Arendonk JAM (2010) Across-line SNP association study for direct and associative effects on feather damage in laying hens. Behav Genet 40:715–727

    Article  PubMed  CAS  Google Scholar 

  • Breuer K, Sutcliffe MEM, Mercer JT, Rance KA, Beattie VE, Sneddon IA, Edwards SA (2003) The effect of breed on the development of adverse social behaviours in pigs. Appl Anim Behav Sci 84:59–74

    Article  Google Scholar 

  • Breuer K, Sutcliffe MEM, Mercer JT, Rance KA, O’Connell NE, Sneddon IA, Edwards SA (2005) Heritability of clinical tail-biting and its relation to performance traits. Livest Prod Sci 93:87–94

    Article  Google Scholar 

  • Brunberg E, Jensen P, Isaksson A, Keeling L (2011) Feather pecking behavior in laying hens: hypothalamic gene expression in birds performing and receiving pecks. Poultry Sci 90:1145–1152

    Article  CAS  Google Scholar 

  • Buitenhuis AJ, Rodenburg TB, Siwek M, Cornelissen SJ, Nieuwland MG, Crooijmans RP, Groenen MA, Koene P, Bovenhuis H, van der Poel JJ (2003) Identification of quantitative trait loci for receiving pecks in young and adult laying hens. Poult Sci 82:1661–1667

    PubMed  CAS  Google Scholar 

  • Cassady JP (2007) Evidence of phenotypic relationships among behavioral characteristics of individual pigs and performance. J Anim Sci 85:218–224

    Article  PubMed  CAS  Google Scholar 

  • Chambon M, Orsetti B, Berthe ML, Bascoul-Mollevi C, Rodriguez C, Duong V, Gleizes M, Thénot S, Bibeau F, Theillet C, Cavaillès V (2011) Prognostic significance of TRIM24/TIF-1α gene expression in breast cancer. Am J Pathol 178:1461–1469

    Article  PubMed  CAS  Google Scholar 

  • D’Eath RB, Roehe R, Turner SP, Ison SH, Farish M, Jack MC, Lawrence AB (2009) Genetics of animal temperament: aggressive behaviour at mixing is genetically associated with the response to handling in pigs. Animal 3:1544–1554

    Article  PubMed  Google Scholar 

  • Derwińska K, Mierzewska H, Goszczańska A, Szczepanik E, Xia Z, Kuśmierska K, Tryfon J, Kutkowska-Kaźmierczak A, Bocian E, Mazurczak T, Obersztyn E, Stankiewicz P (2012) Clinical improvement of the aggressive neurobehavioral phenotype in a patient with a deletion of PITX3 and the absence of L-DOPA in the cerebrospinal fluid. Am J Med Genet B Neuropsychiatr Genet 159B:236–242

    Article  PubMed  Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  PubMed  CAS  Google Scholar 

  • European Food Safety Authority (EFSA) (2007) Scientific Opinion of the Panel on Animal Health and Welfare on a request from Commission on the risks associated with tail biting in pigs and possible means to reduce the need for tail docking considering the different housing and husbandry systems. EFSA J 611:1–13. http://www.efsa.europa.eu/en/efsajournal/doc/611.pdf

    Google Scholar 

  • Ferguson CJ, Beaver KM (2009) Natural born killers: the genetic origins of extreme violence. Aggres Violent Behav 14:286–294

    Article  Google Scholar 

  • Flisikowski K, Schwarzenbacher H, Wysocki M, Weigend S, Preisinger R, Kjaer JB, Fries R (2009) Variation in neighbouring genes of the dopaminergic and serotonergic systems affects feather pecking behaviour of laying hens. Anim Genet 40:192–199

    Article  PubMed  CAS  Google Scholar 

  • Fox RM, Hanlon CD, Andrew DJ (2010) The CrebA/Creb3-like transcription factors are major and direct regulators of secretory capacity. J Cell Biol 191:479–492

    Article  PubMed  CAS  Google Scholar 

  • Guise HJ, Penny RHC (1998) Tail-biting and tail-docking in pigs. Vet Rec 142:46

    PubMed  CAS  Google Scholar 

  • Hessing MJC, Hagelsø AM, van Beek JAM, Wiepkema PR, Schouten WGP, Krukow R (1993) Individual behavioural characteristics in pigs. Appl Anim Behav Sci 37:285–295

    Article  Google Scholar 

  • Hocking PM, Channing CE, Waddington D, Jones RB (2001) Age-related changes in fear, sociality and pecking behaviours in two strains of laying hen. Br Poult Sci 42:414–423

    Article  PubMed  CAS  Google Scholar 

  • Hughes BO, Duncan IJ (1972) The influence of strain and environmental factors upon feather pecking and cannibalism in fowls. Br Poult Sci 13:525–547

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Tomita Y, Mouri A, Koga M, Okochi T, Yoshimura R, Yamanouchi Y, Kinoshita Y, Hashimoto R, Williams HJ, Takeda M, Nakamura J, Nabeshima T, Owen MJ, O’Donovan MC, Honda H, Arinami T, Ozaki N, Iwata N (2010) Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case–control association approaches. Biol Psychiatry 67:263–269

    Article  PubMed  CAS  Google Scholar 

  • Jensen P, Keeling L, Schütz K, Andersson L, Mormède P, Brändström H, Forkman B, Kerje S, Fredriksson R, Ohlsson C, Larsson S, Mallmin H, Kindmark A (2005) Feather pecking in chickens is genetically related to behavioural and developmental traits. Physiol Behav 86:52–60

    Article  PubMed  CAS  Google Scholar 

  • Jensen MB, Studnitz M, Pedersen LJ (2010) The effect of type of rooting material and space allowance on exploration and abnormal behaviour in growing pigs. Appl Anim Behav Sci 123:87–92

    Article  Google Scholar 

  • Keeling L, Andersson L, Schütz KE, Kerje S, Fredriksson R, Carlborg O, Cornwallis CK, Pizzari T, Jensen P (2004) Chicken genomics: feather-pecking and victim pigmentation. Nature 431:645–646

    Article  PubMed  CAS  Google Scholar 

  • Kjaer JB, Sørensen P (2002) Feather pecking and cannibalism in free-range laying hens as affected by genotype, dietary level of methionine + cysteine, light intensity during rearing and age at first access to the range area. Appl Anim Behav Sci 76:21–39

    Article  Google Scholar 

  • Kjaer JB, Sørensen P, Su G (2001) Divergent selection on feather pecking behaviour in laying hens (Gallus gallus domesticus). Appl Anim Behav Sci 71:229–239

    Article  PubMed  Google Scholar 

  • Klein T, Zeltner E, Huber-Eicher B (2000) Are genetic differences in foraging behaviour of laying hen chicks paralleled by hybrid-specific differences in feather pecking? Appl Anim Behav Sci 70:143–155

    Article  PubMed  Google Scholar 

  • Mason GJ (1991) Stereotypies: a critical review. Anim Behav 41:1015–1037

    Article  Google Scholar 

  • Mason DA, Frick PJ (1994) The heritability of antisocial behavior: a meta-analysis of twin and adoption studies. J Psychopathol Behav 16:301–323

    Article  Google Scholar 

  • Miles DR, Carey G (1997) Genetic and environmental architecture of human aggression. J Pers Soc Psychol 72:207–217

    Article  PubMed  CAS  Google Scholar 

  • Newman S (1994) Quantitative- and molecular-genetic effects on animal well-being: adaptive mechanisms. J Anim Sci 72:1641–1653

    PubMed  CAS  Google Scholar 

  • Norton WH, Stumpenhorst K, Faus-Kessler T, Folchert A, Rohner N, Harris MP, Callebert J, Bally-Cuif L (2011) Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome. J Neurosci 31:13796–13807

    Article  PubMed  CAS  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

  • Rhee SH, Waldman ID (2002) Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psycol Bull 128:490–529

    Article  Google Scholar 

  • Saito T, Hayashi D, Shibata S, Jogamoto M, Kamoda T (2010) Novel compound heterozygous ATP6V0A4 mutations in an infant with distal renal tubular acidosis. Eur J Pediatr 169:1271–1273

    Article  PubMed  Google Scholar 

  • Satoh Y, Endo S, Nakata T, Kobayashi Y, Yamada K, Ikeda T, Takeuchi A, Hiramoto T, Watanabe Y, Kazama T (2011) ERK2 contributes to the control of social behaviors in mice. J Neurosci 31:11953–11967

    Article  PubMed  CAS  Google Scholar 

  • Sugden K, Arseneault L, Harrington H, Moffitt TE, Williams B, Caspi A (2010) Serotonin transporter gene moderates the development of emotional problems among children following bullying victimization. J Am Acad Child Adolesc Psychiatry 49:830–840

    Article  PubMed  Google Scholar 

  • Taylor NR, Main DCJ, Mendl M, Edwards SA (2010) Tail-biting: a new perspective. Vet J 186:137–147

    Article  PubMed  Google Scholar 

  • The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  • Valros A, Ahlström S, Rintala H, Häkkinen T, Saloniemi H (2004) The prevalence of tail damage in slaughter pigs in Finland and associations to carcass condemnations. Acta Agric Scand Sect A Anim Sci 54:213–219

    Google Scholar 

  • Walker PK, Bilkei G (2006) Tail-biting in outdoor pig production. Vet J 171:367–369

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Jin Y, Arnoldussen YJ, Jonson I, Qu S, Mælandsmo GM, Kristian A, Risberg B, Wæhre H, Danielsen HE, Saatcioglu F (2010) STAMP1 is both a proliferative and an antiapoptotic factor in prostate cancer. Cancer Res 70:5818–5828

    Article  PubMed  CAS  Google Scholar 

  • Zanella AJ, Broom DM, Hunter JC, Mendl MT (1996) Brain opioid receptors in relation to stereotypies, inactivity, and housing in sows. Physiol Behav 59:769–775

    Article  PubMed  CAS  Google Scholar 

  • Zonderland JJ, Wolthuis-Fillerup M, van Reenen CG, Bracke MBM, Kemp B, den Hartog LA, Spoolder HAM (2008) Prevention and treatment of tail biting in weaned piglets. Appl Anim Behav Sci 110:269–281

    Article  Google Scholar 

  • Zonderland JJ, Bracke MBM, den Hartog LA, Kemp B, Spoolder HAM (2010) Gender effects on tail damage development in single- or mixed-sex groups of weaned piglets. Livest Sci 129:151–158

    Article  Google Scholar 

  • Zupan M, Janczak AM, Framstad T, Zanella AJ (2012) The effect of biting tails and having tails bitten in pigs. Physio Behav 106:638–44

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Allison V. Grove, AG Research, LLC for her assistance with the manuscript preparation. We are also grateful to the producers who contributed by sending us the hair samples. This study was performed within the project “NKJ 129: Tail biting and tail docking in pigs—biological mechanisms, prevention, treatment and economical aspects”, supported by the Nordic Joint Committee for Agricultural Research (NKJ) and financed by the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly Louise Neibergs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, K., Zanella, R., Ventura, C. et al. Identification of chromosomal locations associated with tail biting and being a victim of tail-biting behaviour in the domestic pig (Sus scrofa domesticus). J Appl Genetics 53, 449–456 (2012). https://doi.org/10.1007/s13353-012-0112-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-012-0112-2

Keywords

Navigation