Abstract
DNA sequences homologous to the maize Activator (Ac) element are widespread in plant genomes. Nowadays, several reports are available concerning the distribution and characterisation of Ac-homologous sequences in natural populations of different cereal species. but these mobile genetic elements still remain to be comprehensively characterised. In this respect, there is a particular lack of information about the dynamics of Ac-homologous sequences within mutant germplasm collections. Here, we present data on the genomic diversity and methylation patterns of Ac-homologous sequences in ethyl methanesulphonate (EMS)-induced sphaerococcum mutant forms of common wheat (Triticum aestivum L.) and triticale (X Triticosecale Witt.). The results show that the initial EMS treatment has influenced the wheat genome stability by enhancing the dynamics of Ac transposon-homologous sequences.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Altinkut A, Kotseruba V, Kirzhner VM, Nevo E, Raskina O, Belyayev A (2006a) Ac-like transposons in populations of wild diploid Triticeae species: comparative analysis of chromosomal distribution. Chromosome Res 14:307–317. doi:10.1007/s10577-006-1048-3
Altinkut A, Raskina O, Nevo E, Belyayev A (2006b) En/Spm-like transposons in Poaceae species: transposase sequence variability and chromosomal distribution. Cell Mol Biol Lett 11:214–230. doi:10.2478/s11658-006-0017-3
Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269
Bonchev G, Georgiev S, Pearce S (2010) Retrotransposons and ethyl methanesulfonate-induced diversity in hexaploid wheat and Triticale. Cent Eur J Biol 5:765–776. doi:10.2478/s11535-010-0072-7
Calvi BR, Hong TJ, Findley SD, Gelbart WM (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66:465–471. doi:10.1016/0092-8674(81)90010-6
Chernyshev AI, Golovkin MV, Mil’shina NV, Gazumyan AK, Anan’ev EV (1989) Molecular-genetic organization of mobile elements of the Ac-Ds family in cereal genomes. Identification of DNA sequences homologous to the Ac element of maize in barley Hordeum vulgare L. genome. Sov Genet 24:1338–1344
De Keukeleire P, De Schepper S, Gielis J, Gerats T (2004) A PCR-based assay to detect hAT-like transposon sequences in plants. Chromosome Res 12:117–123. doi:10.1023/B:CHRO.0000013163.34505.96
Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol 23:1386–1396. doi:10.1093/molbev/msl004
Fedoroff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242. doi:10.1016/0092-8674(83)90226-X
Finnegan EJ, Genger RK, Peacock WJ, Dennis ES (1988) DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol 49:223–247. doi:10.1146/annurev.arplant.49.1.223
Georgiev S (1976) EMS-induced mutants of the sphaerococcum type in T. aestivum L. Genet Plant Breed 9:218–227
Georgiev S (1982) EMS-induced sphaerococcum mutation in Triticale. Wheat Inf Serv, Japan 55:32–35
Georgiev S, Nicoloff H (1976) Cytological study of certain sphaerococcum type of mutant forms obtained from Triticum aestivum L. Proc Bulg Acad Sci 29:1681–1684
Georgiev S, Dekova T, Atanassov I, Angelova Z, Dimitrova A, Mirkova V, Stoilov L (2000) Transposable elements in wheat and Triticale sphaerococcum mutant forms. Biotechnol Biotechnol Equip 14:25–32
Georgiev S (2004) Molecular genetic and cytogenetic studies of functional activity of the genomes of some representatives of Triticum, Hordeum and Silene L. D. Sc Dissertation, Sofia University “St. Kliment Ochridski”
Kunze R, Saedler H, Lönnig W-E (1997) Plant transposable elements. Adv Bot Res 27:331–470. doi:10.1016/S0065-2296(08)60284-0
Langdon T, Jenkins G, Hasterok R, Jones RN, King IP (2003) A high-copy-number CACTA family transposon in temperate grasses and cereals. Genetics 163:1097–1108
Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511. doi:10.1111/j.1365-313X.2004.02228.x
McClintock B (1949) Mutable loci in maize. Carnegie Inst Washington Year Book 48:142–154
McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801. doi:10.1126/science.15739260
Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 19:4321–4325. doi:10.1093/nar/8.19.4321
Rubin E, Lithwick G, Levy AA (2001) Structure and evolution of the hAT transposon superfamily. Genetics 158:949–957
Sanmiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82:37–44
Sears ER (1947) The sphaerococcum gene in wheat. Genetics 32:102–103
Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285. doi:10.1038/nrg2072
Staginnus CB, Huettel CD, Desel C, Schmidt T, Kahl G (2001) A PCR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Res 9:591–605. doi:10.1023/A:1012455520353
Wang L, Heinlein M, Kunze R (1996) Methylation pattern of Activator transposase binding sites in maize endosperm. Plant Cell 8:747–758. doi:10.1105/tpc.8.4.747
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi:10.1093/bioinformatics/btp033
Zale JM, Steber CM (2002) Transposon-related sequences in the Triticeae. Cereal Res Commun 30:237–244
Acknowledgements
This study was supported by the Bulgarian National Science Fund, Genomics Programme; Contract No. G-1-03/2004/, Ministry of Education and Science of Bulgaria and partially by the IAEA TC Project 5/013.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bonchev, G., Stoilov, L., Angelova, Z. et al. Genomic diversity of Ac-like transposable elements in sphaerococcum mutant forms of common wheat (Triticum aestivum L.) and triticale (X Triticosecale Witt.). J Appl Genetics 53, 9–17 (2012). https://doi.org/10.1007/s13353-011-0065-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13353-011-0065-x


