Skip to main content
Log in

Genomic diversity of Ac-like transposable elements in sphaerococcum mutant forms of common wheat (Triticum aestivum L.) and triticale (X Triticosecale Witt.)

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

DNA sequences homologous to the maize Activator (Ac) element are widespread in plant genomes. Nowadays, several reports are available concerning the distribution and characterisation of Ac-homologous sequences in natural populations of different cereal species. but these mobile genetic elements still remain to be comprehensively characterised. In this respect, there is a particular lack of information about the dynamics of Ac-homologous sequences within mutant germplasm collections. Here, we present data on the genomic diversity and methylation patterns of Ac-homologous sequences in ethyl methanesulphonate (EMS)-induced sphaerococcum mutant forms of common wheat (Triticum aestivum L.) and triticale (X Triticosecale Witt.). The results show that the initial EMS treatment has influenced the wheat genome stability by enhancing the dynamics of Ac transposon-homologous sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Altinkut A, Kotseruba V, Kirzhner VM, Nevo E, Raskina O, Belyayev A (2006a) Ac-like transposons in populations of wild diploid Triticeae species: comparative analysis of chromosomal distribution. Chromosome Res 14:307–317. doi:10.1007/s10577-006-1048-3

    Article  PubMed  CAS  Google Scholar 

  • Altinkut A, Raskina O, Nevo E, Belyayev A (2006b) En/Spm-like transposons in Poaceae species: transposase sequence variability and chromosomal distribution. Cell Mol Biol Lett 11:214–230. doi:10.2478/s11658-006-0017-3

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Bonchev G, Georgiev S, Pearce S (2010) Retrotransposons and ethyl methanesulfonate-induced diversity in hexaploid wheat and Triticale. Cent Eur J Biol 5:765–776. doi:10.2478/s11535-010-0072-7

    Article  CAS  Google Scholar 

  • Calvi BR, Hong TJ, Findley SD, Gelbart WM (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66:465–471. doi:10.1016/0092-8674(81)90010-6

    Article  PubMed  CAS  Google Scholar 

  • Chernyshev AI, Golovkin MV, Mil’shina NV, Gazumyan AK, Anan’ev EV (1989) Molecular-genetic organization of mobile elements of the Ac-Ds family in cereal genomes. Identification of DNA sequences homologous to the Ac element of maize in barley Hordeum vulgare L. genome. Sov Genet 24:1338–1344

    Google Scholar 

  • De Keukeleire P, De Schepper S, Gielis J, Gerats T (2004) A PCR-based assay to detect hAT-like transposon sequences in plants. Chromosome Res 12:117–123. doi:10.1023/B:CHRO.0000013163.34505.96

    Article  PubMed  Google Scholar 

  • Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol 23:1386–1396. doi:10.1093/molbev/msl004

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242. doi:10.1016/0092-8674(83)90226-X

    Article  PubMed  CAS  Google Scholar 

  • Finnegan EJ, Genger RK, Peacock WJ, Dennis ES (1988) DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol 49:223–247. doi:10.1146/annurev.arplant.49.1.223

    Article  Google Scholar 

  • Georgiev S (1976) EMS-induced mutants of the sphaerococcum type in T. aestivum L. Genet Plant Breed 9:218–227

    Google Scholar 

  • Georgiev S (1982) EMS-induced sphaerococcum mutation in Triticale. Wheat Inf Serv, Japan 55:32–35

    Google Scholar 

  • Georgiev S, Nicoloff H (1976) Cytological study of certain sphaerococcum type of mutant forms obtained from Triticum aestivum L. Proc Bulg Acad Sci 29:1681–1684

    Google Scholar 

  • Georgiev S, Dekova T, Atanassov I, Angelova Z, Dimitrova A, Mirkova V, Stoilov L (2000) Transposable elements in wheat and Triticale sphaerococcum mutant forms. Biotechnol Biotechnol Equip 14:25–32

    CAS  Google Scholar 

  • Georgiev S (2004) Molecular genetic and cytogenetic studies of functional activity of the genomes of some representatives of Triticum, Hordeum and Silene L. D. Sc Dissertation, Sofia University “St. Kliment Ochridski”

  • Kunze R, Saedler H, Lönnig W-E (1997) Plant transposable elements. Adv Bot Res 27:331–470. doi:10.1016/S0065-2296(08)60284-0

    Article  CAS  Google Scholar 

  • Langdon T, Jenkins G, Hasterok R, Jones RN, King IP (2003) A high-copy-number CACTA family transposon in temperate grasses and cereals. Genetics 163:1097–1108

    PubMed  CAS  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511. doi:10.1111/j.1365-313X.2004.02228.x

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1949) Mutable loci in maize. Carnegie Inst Washington Year Book 48:142–154

    Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801. doi:10.1126/science.15739260

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 19:4321–4325. doi:10.1093/nar/8.19.4321

    Article  Google Scholar 

  • Rubin E, Lithwick G, Levy AA (2001) Structure and evolution of the hAT transposon superfamily. Genetics 158:949–957

    PubMed  CAS  Google Scholar 

  • Sanmiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82:37–44

    Article  CAS  Google Scholar 

  • Sears ER (1947) The sphaerococcum gene in wheat. Genetics 32:102–103

    Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285. doi:10.1038/nrg2072

    Article  PubMed  CAS  Google Scholar 

  • Staginnus CB, Huettel CD, Desel C, Schmidt T, Kahl G (2001) A PCR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Res 9:591–605. doi:10.1023/A:1012455520353

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Heinlein M, Kunze R (1996) Methylation pattern of Activator transposase binding sites in maize endosperm. Plant Cell 8:747–758. doi:10.1105/tpc.8.4.747

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi:10.1093/bioinformatics/btp033

    Article  PubMed  CAS  Google Scholar 

  • Zale JM, Steber CM (2002) Transposon-related sequences in the Triticeae. Cereal Res Commun 30:237–244

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Bulgarian National Science Fund, Genomics Programme; Contract No. G-1-03/2004/, Ministry of Education and Science of Bulgaria and partially by the IAEA TC Project 5/013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Bonchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonchev, G., Stoilov, L., Angelova, Z. et al. Genomic diversity of Ac-like transposable elements in sphaerococcum mutant forms of common wheat (Triticum aestivum L.) and triticale (X Triticosecale Witt.). J Appl Genetics 53, 9–17 (2012). https://doi.org/10.1007/s13353-011-0065-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-011-0065-x

Keywords