Journal of Applied Genetics

, Volume 52, Issue 4, pp 481–486 | Cite as

Microarray analysis of differentially expressed microRNAs in non-regressed and regressed bovine corpus luteum tissue; microRNA-378 may suppress luteal cell apoptosis by targeting the interferon gamma receptor 1 gene

  • Tenghe Ma
  • Hao Jiang
  • Yan Gao
  • Yumin Zhao
  • Lisheng Dai
  • Qiuhong Xiong
  • Yanli Xu
  • Zhihui Zhao
  • Jiabao Zhang
Animal Genetics ∙ Original Paper

Abstract

MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules that down-regulate the expression of target genes in a sequence-dependent manner. Recent studies indicated that miRNAs are mechanistically involved in the regulation of the mammalian corpus luteum (CL). However, few studies have profiled the different miRNA expression patterns in bovine non-regressed and regressed CL. In this study, miRNA microarray was employed to investigate the different miRNA expression patterns in bovine CL. Among the 13 differentially expressed miRNAs, seven were preferentially expressed in non-regressed CL, while six miRNAs were more highly expressed in regressed CL. Real-time RT-PCR was used to validate the microarray results. Mir-378 miRNA, known to be associated with apoptosis, was 8.54-fold (P < 0.01) up-regulated in non-regressed CL, and the interferon gamma receptor 1 (IFNGR1) gene, which potentially plays a role in apoptosis of the luteal cell, was predicted to be the target of mir-378. The results of real-time RT-PCR of mir-378 and western blot analysis of the IFNGR1 protein at different stages of CL development showed that mir-378 decreased the expression of IFNGR1 protein but not IFNGR1 mRNA. Taken together, our data support a direct role for miRNA in apoptosis of bovine CL.

Keywords

Cattle Corpus luteum Microarray MicroRNA 

Supplementary material

13353_2011_55_MOESM1_ESM.pdf (81 kb)
ESM 1(PDF 81 kb)

References

  1. Aguet M, Dembic Z, Merlin G (1988) Molecular cloning and expression of the human interferon-gamma receptor. Cell 55:273–280PubMedCrossRefGoogle Scholar
  2. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826PubMedCrossRefGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  4. Bentwich IA, Avniel Y, Karov R, Aharonov S, Gilad O, Barad A et al. (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770PubMedCrossRefGoogle Scholar
  5. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36PubMedCrossRefGoogle Scholar
  6. Buchan JR, Parker R (2007) Molecular biology. The two faces of miRNA. Science 318:1877–1878PubMedCrossRefGoogle Scholar
  7. Carletti MZ, Christenson LK (2009) MicroRNA in the ovary and female reproductive tract. J Anim Sci 87:E29–38PubMedCrossRefGoogle Scholar
  8. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMedCrossRefGoogle Scholar
  9. Dennis C (2002) Small RNAs: the genome's guiding hand? Nature 420:732PubMedCrossRefGoogle Scholar
  10. Ferrara N, Chen H, Davis-Smyth T, Gerber HP, Nguyen TN, Peers D et al. (1998) Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med 4:336–340PubMedCrossRefGoogle Scholar
  11. Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 105:14879–14884PubMedCrossRefGoogle Scholar
  12. Garofalo M, Condorelli GL, Croce CM, Condorelli G (2010) MicroRNAs as regulators of death receptors signaling. Cell Death Diffe 17:200–208CrossRefGoogle Scholar
  13. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–144PubMedCrossRefGoogle Scholar
  14. Hansel W, Blair RM (1996) Bovine corpus luteum: a historic overview and implications for future research. Theriogenology 45:1267–1294PubMedCrossRefGoogle Scholar
  15. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531PubMedCrossRefGoogle Scholar
  16. Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E et al. (2009) Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics 10:443PubMedCrossRefGoogle Scholar
  17. Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450PubMedCrossRefGoogle Scholar
  18. Lee DY, Deng Z, Wang C, Yang B (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 104:20350–20355PubMedCrossRefGoogle Scholar
  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  20. Milvae RA, Hinckley ST, Carlson JC (1996) Luteotropic and luteolytic mechanisms in the bovine corpus luteum. Theriogenology 45:1327–1349PubMedCrossRefGoogle Scholar
  21. Miyamoto Y, Skarzynski DJ, Okuda K (2000) Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle? Biol Reprod 62:1109–1115PubMedCrossRefGoogle Scholar
  22. Niwa R, Slack FJ (2007) The evolution of animal microRNA function. Curr Opin Genet Dev 17:145–150PubMedCrossRefGoogle Scholar
  23. Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin S et al. (2008) Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest 118:1944–1954PubMedCrossRefGoogle Scholar
  24. Pate JL (1996) Intercellular communication in the bovine corpus luteum. Theriogenology 45:1381–1397PubMedCrossRefGoogle Scholar
  25. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRefGoogle Scholar
  26. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63PubMedCrossRefGoogle Scholar
  27. Taniguchi H, Yokomizo Y, Okuda K (2002) Fas-Fas ligand system mediates luteal cell death in bovine corpus luteum. Biol Reprod 66:754–759PubMedCrossRefGoogle Scholar
  28. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128PubMedCrossRefGoogle Scholar
  29. Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K et al. (2009) Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 76:665–677PubMedCrossRefGoogle Scholar
  30. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354PubMedCrossRefGoogle Scholar
  31. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2011

Authors and Affiliations

  • Tenghe Ma
    • 1
  • Hao Jiang
    • 1
  • Yan Gao
    • 1
    • 2
  • Yumin Zhao
    • 3
  • Lisheng Dai
    • 1
  • Qiuhong Xiong
    • 1
  • Yanli Xu
    • 1
  • Zhihui Zhao
    • 1
    • 1
  • Jiabao Zhang
    • 1
    • 2
  1. 1.College of Animal Science and Veterinary MedicineJilin UniversityChangchunChina
  2. 2.Laboratory Animal CenterJilin UniversityChangchunChina
  3. 3.Jilin Academy of Agricultural SciencesChangchunChina

Personalised recommendations