Skip to main content

Advertisement

Log in

A doubled haploid rye linkage map with a QTL affecting α-amylase activity

  • Plant Genetics • Short Communication
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

A rye doubled haploid (DH) mapping population (Amilo × Voima) segregating for pre-harvest sprouting (PHS) was generated through anther culture of F1 plants. A linkage map was constructed using DHs, to our knowledge, for the first time in rye. The map was composed of 289 loci: amplified fragment length polymorphism (AFLP), microsatellite, random amplified polymorphic DNA (RAPD), retrotransposon-microsatellite amplified polymorphism (REMAP), inter-retrotransposon amplified polymorphism (IRAP), inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers, and extended altogether 732 cM (one locus in every 2.5 cM). All of the seven rye chromosomes and four unplaced groups were formed. Distorted segregation of markers (P ≤ 0.05) was detected on all chromosomes. One major quantitative trait locus (QTL) affecting α-amylase activity was found, which explained 16.1% of phenotypic variation. The QTL was localized on the long arm of chromosome 5R. Microsatellites SCM74, RMS1115, and SCM77, nearest to the QTL, can be used for marker-assisted selection as a part of a rye breeding program to decrease sprouting damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bednarek PT, Masojć P, Lewandowska R, Myśków B (2003) Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. J Appl Genet 44:21–33

    PubMed  Google Scholar 

  • Bolibok H, Gruszczyńska A, Hromada-Judycka A, Rakoczy-Trojanowska M (2007) The identification of QTLs associated with the in vitro response of rye (Secale cereale L.). Cell Mol Biol Lett 12:523–535

    Article  PubMed  CAS  Google Scholar 

  • Chono M, Honda I, Shinoda S, Kushiro T, Kamiya Y, Nambara E, Kawakami N, Kaneko S, Watanabe Y (2006) Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting. J Exp Bot 57:2421–2434

    Article  PubMed  CAS  Google Scholar 

  • Forster BP, Thomas WTB (2004) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88

    Google Scholar 

  • Hackauf B, Wehling P (2002a) Development of microsatellite markers in rye: map construction. In: Osiński R (ed) Proceedings of the EUCARPIA Rye Meeting, Plant Breeding and Acclimatization Institute, Radzikow, Poland, 4–7 July 2001, pp 333–340

  • Hackauf B, Wehling P (2002b) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  • Hackauf B, Wehling P (2003) Development of microsatellite markers in rye: map construction. Plant Breed Seed Sci 48:143–151

    Google Scholar 

  • Hackauf B, Rudd S, van der Voort JR, Miedaner T, Wehling P (2009) Comparative mapping of DNA sequences in rye (Secale cereale L.) in relation to the rice genome. Theor Appl Genet 118:371–384

    Article  PubMed  CAS  Google Scholar 

  • Hagberg S (1960) A rapid method for determining alpha-amylase activity. Cereal Chem 37:218–222

    CAS  Google Scholar 

  • Humphreys DG, Noll J (2002) Methods for characterization of preharvest sprouting resistance in a wheat breeding program. Euphytica 126:61–65

    Article  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1:2478–2484

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Khlestkina EK, Than MHM, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Börner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 109:725–732

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Than MHM, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Börner A (2005) Erratum. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 110:990–991

    Article  CAS  Google Scholar 

  • Korzun V, Malyshev S, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kubaláková M, Valárik M, Bartoš J, Vrána J, Číhalíková J, Molnár-Láng M, Doležel J (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46:893–905

    Article  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Masojć P, Milczarski P (2005) Mapping QTLs for α-amylase activity in rye grain. J Appl Genet 46:115–123

    PubMed  Google Scholar 

  • Masojć P, Milczarski P (2009) Relationship between QTLs for preharvest sprouting and alpha-amylase activity in rye grain. Mol Breed 23:75–84

    Article  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Masojć P, Milczarski P, Myśków B (1999) Identification of genes underlying sprouting resistance in rye. In: Weipert D (ed) Eighth International Symposium on Pre-Harvest Sprouting in Cereals 1998, poster presentation. Association of Cereal Research, Federal Centre for Cereal, Potato and Lipid Research, Detmold, Germany, pp 131–136

  • Masojć P, Banek-Tabor A, Milczarski P, Twardowska M (2007) QTLs for resistance to preharvest sprouting in rye (Secale cereale L.). J Appl Genet 48:211–217

    Article  PubMed  Google Scholar 

  • Masojć P, Lebiecka K, Milczarski P, Wiśniewska M, Łań A, Owsianicki R (2009) Three classes of loci controlling preharvest sprouting in rye (Secale cereale L.) discerned by means of bidirectional selective genotyping (BSG). Euphytica 170:123–129

    Article  Google Scholar 

  • Nyachiro JM, Clarke FR, DePauw RM, Knox RE, Armstrong KC (2002) Temperature effects on seed germination and expression of seed dormancy in wheat. Euphytica 126:123–127

    Article  Google Scholar 

  • Perten H (1964) Application of the falling number method for evaluating alpha-amylase activity. Cereal Chem 41:127–140

    CAS  Google Scholar 

  • Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    PubMed  CAS  Google Scholar 

  • Saal B, Wricke G (2002) Clustering of amplified fragment length polymorphism markers in a linkage map of rye. Plant Breed 121:117–123

    Article  CAS  Google Scholar 

  • Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470

    Article  PubMed  CAS  Google Scholar 

  • Schulman AH, Flavell AJ, Ellis THN (2004) The application of LTR retrotransposons as molecular markers in plants. In: Miller WJ, Capy P (eds) Mobile genetic elements and their application in genomics. Humana Press, Totawa, NJ, pp 145–173

    Chapter  Google Scholar 

  • Tenhola-Roininen T (2009) Rye doubled haploids—production and use in mapping studies. Dissertation, Studies in Biological and Environmental Science, no. 198, University of Jyväskylä, Finland

  • Tenhola-Roininen T, Tanhuanpää P (2010) Tagging the dwarfing gene Ddw1 in a rye population derived from doubled haploid parents. Euphytica 172:303–312

    Article  CAS  Google Scholar 

  • Tenhola-Roininen T, Immonen S, Tanhuanpää P (2006) Rye doubled haploids as a research and breeding tool—a practical point of view. Plant Breed 125:584–590

    Article  Google Scholar 

  • Tinker NA, Mather DE (1995) MQTL: software for simplified composite interval mapping of QTL in multiple environments. J Agric Genomics 1:2

    Google Scholar 

  • Twardowska M, Masojć P, Milczarski P (2005) Pyramiding genes affecting sprouting resistance in rye by means of marker assisted selection. Euphytica 143:257–260

    Article  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® version 3.0: Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Boreal Plant Breeding Ltd. financed the development of rye microsatellites and kindly provided material for the anther culture studies. This study was supported by the Finnish Ministry of Agriculture and Forestry, Heikki and Hilma Honkanen Foundation, Academy of Finland (project number 112053), and the Finnish Cultural Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teija Tenhola-Roininen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenhola-Roininen, T., Kalendar, R., Schulman, A.H. et al. A doubled haploid rye linkage map with a QTL affecting α-amylase activity. J Appl Genetics 52, 299–304 (2011). https://doi.org/10.1007/s13353-011-0029-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-011-0029-1

Keywords