Abstract
The temperature trend near the stratopause is rarely evaluated owing to the limited long-term observations of global temperature. In this study, the spatial patterns of the temperature trends near the northern stratopause are investigated by using satellite and reanalysis datasets. Our analysis reveals a zonally asymmetric temperature trend pattern near the northern mid-to-high latitude stratopause during January, and this pattern underwent an evident transition around the 2000s. From 1980 to 2003, there was a cooling trend in the Western Hemisphere and a warming trend in the Eastern Hemisphere. In contrast, a reversed zonally asymmetric temperature trend pattern existed in the east-west direction from 2003 to 2020. Although the warming trends are statistically insignificant, they contrasted with the overall cooling trend in the upper stratosphere due to ozone depletion and an increase in well-mixed greenhouse gases in recent decades. The zonally asymmetric temperature trends were induced by the transition in the intensity of quasi-stationary planetary wavenumber 1 (wave 1) near the stratopause. The increasing (decreasing) trend of the intensity of wave 1 enhanced (weakened) its meridional temperature advection near the stratopause before (after) the 2000s; consequently, a zonally asymmetric temperature trend pattern exists in the east–west direction near the stratopause. The transition in the intensity of the stratospheric wave 1 around the 2000s is most likely caused by the transition in the intensity of wave 1 activity in the troposphere.
This is a preview of subscription content, access via your institution.
References
Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, San Diego, 489 pp.
Arblaster, J. M., N. P. Gillett, N. Calvo, et al., 2014: Stratospheric Ozone Changes and Climate. Report No. 55, World Meteorological Organization, Geneva, 61 pp.
Chen, X. Y., and K.-K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345, 897–903, doi: https://doi.org/10.1126/science.1254937.
Chipperfield, M. P., S. Bekki, S. Dhomse, et al., 2017: Detecting recovery of the stratospheric ozone layer. Nature, 549, 211–218, doi: https://doi.org/10.1038/nature23681.
France, J. A., and V. L. Harvey, 2013: A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause. J. Geophys. Res. Atmos., 118, 2241–2254, doi: https://doi.org/10.1002/jgrd.50218.
France, J. A., V. L. Harvey, C. E. Randall, et al., 2012: A climatology of stratopause temperature and height in the polar vortex and anticyclones. J. Geophys. Res. Atmos., 117, D06116, doi: https://doi.org/10.1029/2011JD016893.
Fu, Q., S. Solomon, and P. Lin, 2010: On the seasonal dependence of tropical lower-stratospheric temperature trends. Atmos. Chem. Phys., 10, 2643–2653, doi: https://doi.org/10.5194/acp-10-2643-2010.
Fu, Q., S. Solomon, H. A. Pahlavan, et al., 2019: Observed changes in Brewer-Dobson circulation for 1980–2018. Environ. Res. Lett., 14, 114026, doi: https://doi.org/10.1088/1748-9326/ab4de7.
Funatsu, B. M., C. Claud, P. Keckhut, et al., 2016: Regional and seasonal stratospheric temperature trends in the last decade (2002–2014) from AMSU observations. J. Geophys. Res. Atmos., 121, 8172–8185, doi: https://doi.org/10.1002/2015JD024305.
Gabriel, A., D. Peters, I. Kirchner, et al., 2007: Effect of zonally asymmetric ozone on stratospheric temperature and planetary wave propagation. Geophys. Res. Lett., 34, L06807, doi: https://doi.org/10.1029/2006GL028998.
Gabriel, A., H. Körnich, S. Lossow, et al., 2011a: Zonal asymmetries in middle atmospheric ozone and water vapour derived from Odin satellite data 2001–2010. Atmos. Chem. Phys., 11, 9865–9885, doi: https://doi.org/10.5194/acp-11-9865-2011.
Gabriel, A., H. Schmidt, and D. H. W. Peters, 2011b: Effects of the 11 year solar cycle on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor. J. Geophys. Res. Atmos., 116, D23301, doi: https://doi.org/10.1029/2011JD015825.
Garcia, R. R., J. Yue, and J. M. Russell III, 2019: Middle atmosphere temperature trends in the twentieth and twenty-first centuries simulated with the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res. Space Phys., 124, 7984–7993, doi: https://doi.org/10.1029/2019JA026909.
Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 3282–3299, doi: https://doi.org/10.1175/2010JCLI3010.1.
Gelaro, R., W. McCarty, M. J. Suárez, et al., 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454, doi: https://doi.org/10.1175/JCLI-D-16-0758.1.
Golitsyn, G. S., A. I. Semenov, N. N. Shefov, et al., 1996: Long-term temperature trends in the middle and upper atmosphere. Geophys. Res. Lett., 23, 1741–1744, doi: https://doi.org/10.1029/96GL01592.
Harvey, V. L., and M. H. Hitchman, 1996: A climatology of the Aleutian High. J. Atmos. Sci., 53, 2088–2102, doi: https://doi.org/10.1175/1520-0469(1996)053<2088:ACOTAH>2.0.CO;2.
Harvey, V. L., R. B. Pierce, T. D. Fairlie, et al., 2002: A climatology of stratospheric polar vortices and anticyclones. J. Geophys. Res. Atmos., 107, 4442, doi: https://doi.org/10.1029/2001JD001471.
Haynes, P., 2005: Stratospheric dynamics. Annu. Rev. Fluid Mech., 37, 263–293, doi: https://doi.org/10.1146/annurev.fluid.37.061903.175710.
He, Y., X. Q. Zhu, Z. Sheng, et al., 2022: Observations of inertia gravity waves in the Western Pacific and their characteristic in the 2015/2016 quasi-biennial oscillation disruption. J. Geophys. Res. Atmos., 127, e2022JD037208, doi: https://doi.org/10.1029/2022JD037208.
Hu, D. Z., W. S. Tian, F. Xie, et al., 2015: Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere. J. Geophys. Res. Atmos., 120, 8299–8317, doi: https://doi.org/10.1002/2014JD022855.
Hu, D. Z., Y. P. Guo, and Z. Y. Guan, 2019: Recent weakening in the stratospheric planetary wave intensity in early winter. Geophys. Res. Lett., 46, 3953–3962, doi: https://doi.org/10.1029/2019GL082113.
Hu, Y., and Q. Fu, 2009: Stratospheric warming in Southern Hemisphere high latitudes since 1979. Atmos. Chem. Phys., 4, 4329–4340, doi: https://doi.org/10.5194/acp-9-4329-2009.
Hu, Y. Y., and K. K. Tung, 2002: Interannual and decadal variations of planetary wave activity, stratospheric cooling, and Northern Hemisphere annular mode. J. Climate, 15, 1659–1673, doi: https://doi.org/10.1175/1520-0442(2002)015<1659:IAD-VOP>2.0.CO;2.
Hu, Y. Y., Y. Xia, M. Gao, et al., 2009: Stratospheric temperature changes and ozone recovery in the 21st century. J. Meteor. Res., 23, 263–275.
Ivy, D. J., S. Solomon, and H. E. Rieder, 2016: Radiative and dynamical influences on polar stratospheric temperature trends. J. Climate, 29, 4927–4938, doi: https://doi.org/10.1175/JCLI-D-15-0503.1.
Keckhut, P., C. Claud, B. Funatsu, et al., 2019: Temperature trends observed in the middle atmosphere and future directions. Infrasound Monitoring for Atmospheric Studies: Challenges in Middle Atmosphere Dynamics and Societal Benefits, A. Le Pichon, E. Blanc, and A. Hauchecorne, Eds., 2nd ed. Springer, Cham, 805–823, doi: https://doi.org/10.1007/978-3-319-75140-5_26.
Kodera, K., and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res. Atmos., 107, 4749, doi: https://doi.org/10.1029/2002JD002224.
Lin, P., Q. Fu, S. Solomon, et al., 2009: Temperature trend patterns in Southern Hemisphere high latitudes: Novel indicators of stratospheric change. J. Climate, 22, 6325–6341, doi: https://doi.org/10.1175/2009JCLI2971.1.
Liu, H.-L., M. Rempel, G. Danabasoglu, et al., 2023: Climate responses under an extreme quiet sun scenario. J. Geophys. Res. Atmos., 128, e2022JD037626, doi: https://doi.org/10.1029/2022JD037626.
Long, C. S., M. Fujiwara, S. Davis, et al., 2017: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos. Chem. Phys., 17, 14,593–14,629, doi: https://doi.org/10.5194/acp-17-14593-2017.
Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871–883, doi: https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.
Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 1479–1494, doi: https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.
Maycock, A. C., M. M. Joshi, K. P. Shine, et al., 2014: The potential impact of changes in lower stratospheric water vapour on stratospheric temperatures over the past 30 years. Quart. J. Roy. Meteor. Soc., 140, 2176–2185, doi: https://doi.org/10.1002/qj.2287.
Maycock, A. C., W. J. Randel, A. K. Steiner, et al., 2018: Revisiting the mystery of recent stratospheric temperature trends. Geophys. Res. Lett., 45, 9919–9933, doi: https://doi.org/10.1029/2018GL078035.
McLandress, C., T. G. Shepherd, A. I. Jonsson, et al., 2015: A method for merging nadir-sounding climate records, with an application to the global-mean stratospheric temperature data sets from SSU and AMSU. Atmos. Chem. Phys., 15, 9271–9284, doi: https://doi.org/10.5194/acp-15-9271-2015.
Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217–229, doi: https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.
Ramaswamy, V., M.-L. Chanin, J. Angell, et al., 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 71–122, doi: https://doi.org/10.1029/1999RG000065.
Randel, W. J., K. P. Shine, J. Austin, et al., 2009: An update of observed stratospheric temperature trends. J. Geophys. Res. Atmos., 114, D02107, doi: https://doi.org/10.1029/2008JD010421.
Randel, W. J., A. K. Smith, F. Wu, et al., 2016: Stratospheric temperature trends over 1979–2015 derived from combined SSU, MLS, and SABER satellite observations. J. Climate, 29, 4843–4859, doi: https://doi.org/10.1175/JCLI-D-15-0629.1.
Rao, J., R. C. Ren, and Y. Yang, 2015: Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models. Adv. Atmos. Sci., 32, 952–966, doi: https://doi.org/10.1007/s00376-014-4192-2.
Remsberg, E., 2019: Observation and attribution of temperature trends near the stratopause from HALOE. J. Geophys. Res. Atmos., 124, 6600–6611, doi: https://doi.org/10.1029/2019JD030455.
Remsberg, E., G. Lingenfelser, V. L. Harvey, et al., 2003: On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses. J. Geophys. Res. Atmos., 108, 4628, doi: https://doi.org/10.1029/2003JD003720.
Remsberg, E. E., B. T. Marshall, M. Garcia-Comas, et al., 2008: Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res. Atmos., 113, D17101, doi: https://doi.org/10.1029/2008JD010013.
Seidel, D. J., N. P. Gillett, J. R. Lanzante, et al., 2011: Stratospheric temperature trends: Our evolving understanding. WIREs Climate Change, 2, 592–616, doi: https://doi.org/10.1002/wcc.125.
Seidel, D. J., J. Li, C. Mears, et al., 2016: Stratospheric temperature changes during the satellite era. J. Geophys. Res. Atmos., 121, 664–681, doi: https://doi.org/10.1002/2015JD024039.
Shine, K. P., M. S. Bourqui, P. M. D. F. Forster, et al., 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129, 1565–1588, doi: https://doi.org/10.1256/qj.02.186.
Smith, K. L., C. G. Fletcher, and P. J. Kushner, 2010: The role of linear interference in the annular mode response to extratropical surface forcing. J. Climate, 23, 6036–6050, doi: https://doi.org/10.1175/2010JCLI3606.1.
Steiner, A. K., F. Ladstädter, W. J. Randel, et al., 2020: Observed temperature changes in the troposphere and stratosphere from 1979 to 2018. J. Climate, 33, 8165–8194, doi: https://doi.org/10.1175/JCLI-D-19-0998.1.
Thompson, D. W. J., and S. Solomon, 2009: Understanding recent stratospheric climate change. J. Climate, 22, 1934–1943, doi: https://doi.org/10.1175/2008JCLI2482.1.
Thompson, D. W. J., D. J. Seidel, W. J. Randel, et al., 2012: The mystery of recent stratospheric temperature trends. Nature, 491, 692–697, doi: https://doi.org/10.1038/nature11579.
Wang, L. K., C.-Z. Zou, and H. F. Qian, 2012: Construction of stratospheric temperature data records from stratospheric sounding units. J. Climate, 25, 2931–2946, doi: https://doi.org/10.1175/JCLI-D-11-00350.1.
WMO, 2018: WMO Statement on the State of the Global Climate in 2017. World Meteorological Organization, Geneva, 40 pp.
Xia, Y., W. X. Xu, Y. Y. Hu, et al., 2020: Southern-Hemisphere high-latitude stratospheric warming revisit. Climate Dyn., 54, 1671–1682, doi: https://doi.org/10.1007/s00382-019-05083-7.
Yamashita, C., H.-L. Liu, and X. Z. Chu, 2010: Gravity wave variations during the 2009 stratospheric sudden warming as revealed by ECMWF-T799 and observations. Geophys. Res. Lett., 37, L22806, doi: https://doi.org/10.1029/2010GL045437.
Zhou, L. Y., Y. Xia, and C. F. Zhao, 2022: Influence of stratospheric ozone changes on stratospheric temperature trends in recent decades. Remote Sens., 14, 5364, doi: https://doi.org/10.3900/rs14215364.
Zou, C.-Z., and H. F. Qian, 2016: Stratospheric temperature climate data record from merged SSU and AMSU-A observations. J. Atmos. Oceanic Technol., 33, 1967–1984, doi: https://doi.org/10.1175/JTECH-D-16-0018.1.
Zou, C.-Z., M. Gao, and M. D. Goldberg, 2009: Error structure and atmospheric temperature trends in observations from the Microwave Sounding Unit. J. Climate, 22, 1661–1681, doi: https://doi.org/10.1175/2008JCLI2233.1.
Acknowledgments
We thank Han-Li Liu, William Randel, Fei Xie, Dingzhu Hu, Jiankai Zhang, and Jinlong Huang for their helpful discussions and remarks. We would like to acknowledge the scientific teams at MERRA-2 and TIMED/SABER for providing the datasets.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation of China (42130601 and 42142038).
Rights and permissions
About this article
Cite this article
Wang, T., Tian, W., Zhang, R. et al. Zonally Asymmetric Temperature Trends near the Northern Middle and High Latitude Stratopause during Winter. J Meteorol Res 37, 441–453 (2023). https://doi.org/10.1007/s13351-023-3015-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-023-3015-8