Abstract
For many years, the status of surface vegetation has been monitored by using polar-orbiting satellite imagers such as Moderate Resolution Imaging Spectroradiometer (MODIS). However, limited availability of clear-sky samples makes the derived vegetation index dependent on multiple days of observations. High-frequency observations from the geostationary Fengyun (FY) satellites can significantly reduce the influence of clouds on the synthesis of terrestrial normalized difference vegetation index (NDVI). In this study, we derived the land surface vegetation index based on observational data from the Advanced Geostationary Radiation Imager (AGRI) onboard the FY-4B geostationary satellite. First, the AGRI reflectance of visible band and near-infrared band is corrected to the land surface reflectance by the 6S radiative transfer model. The bidirectional reflectance distribution function (BRDF) model is then used to normalize the AGRI surface reflectance at different observation angles and solar geometries, and an angle-independent reflectance is derived. The AGRI surface reflectance is further corrected to the MODIS levels according to the AGRI spectral response function (SRF). Finally, the daily AGRI data are used to synthesize the surface vegetation index. It is shown that the spatial distribution of NDVI images retrieved by single-day AGRI is consistent with that of 16-day MODIS data. At the same time, the dynamic range of the revised NDVI is closer to that of MODIS.
This is a preview of subscription content, access via your institution.
References
Brown, M. E., J. E. Pinzon, K. Didan, et al., 2006: Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Trans. Geosci. Remote Sens., 44, 1787–1793, doi: https://doi.org/10.1109/TGRS.2005.860205.
Clark, R. N., G. A. Swayze, A. J. Gallagher, et al., 1993: The U.S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 µm. Open-File Report 93-592, U.S. Geological Survey, doi: https://doi.org/10.3133/ofr93592.
Deering, D. W., 1978: Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Ph.D. dissertation, Texas A&M University, College Station, USA, 338 pp.
Elvidge, C. D., 1990: Visible and near infrared reflectance characteristics of dry plant materials. Int. J. Remote Sens., 11, 1775–1795, doi: https://doi.org/10.1080/01431169008955129.
Fensholt, R., I. Sandholt, and M. S. Rasmussen, 2004: Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ., 91, 490–507, doi: https://doi.org/10.1016/j.rse.2004.04.009.
Han, X. Z., J. Yang, S. H. Tang, et al., 2020: Vegetation products derived from Fengyun-3D Medium Resolution Spectral Im-ager-II. J. Meteor. Res., 34, 775–785, doi: https://doi.org/10.1007/s13351-020-0027-5.
Huete, A., K. Didan, T. Miura, et al., 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195–213, doi: https://doi.org/10.1016/S0034-4257(02)00096-2.
Korb, A. R., P. Dybwad, W. Wadsworth, et al., 1996: Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity. Appl. Opt., 35, 1679–1692, doi: https://doi.org/10.1364/AO.35.001679.
Li, S. Q., X. Z. Han, and F. Z. Weng, 2022: Monitoring land vegetation from geostationary satellite Advanced Himawari Imager (AHI). Remote Sens., 14, 3817, doi: https://doi.org/10.3390/rs14153817.
Li, X., and A. H. Strahler, 1992: Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens., 30, 276–292, doi: https://doi.org/10.1109/36.134078.
Lucht, W., C. B. Schaaf, and A. H. Strahler, 2000: An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens., 38, 977–998, doi: https://doi.org/10.1109/36.841980.
Miura, T., J. Muratsuchi, and M. Vargas, 2018: Assessment of cross-sensor vegetation index compatibility between VIIRS and MODIS using near-coincident observations. J. Appl. Remote Sens., 12, 045004, doi: https://doi.org/10.1117/1.JRS.12.045004.
Privette, J. L., T. F. Eck, and D. W. Deering, 1997: Estimating spectral albedo and nadir reflectance through inversion of simple BRDF models with AVHRR/MODIS-like data. J. Geophys. Res. Atmos., 102, 29,529–29,542, doi: https://doi.org/10.1029/97JD01215.
Roujean, J.-L., M. Leroy, and P.-Y. Deschamps, 1992: A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. Atmos., 97, 20,455–20,468, doi: https://doi.org/10.1029/92JD01411.
Skakun, S., C. O. Justice, E. Vermote, et al., 2018: Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring. Int. J. Remote Sens., 39, 971–992, doi: https://doi.org/10.1080/01431161.2017.1395970.
Teillet, P. M., J. L. Barker, B. L. Markham, et al., 2001: Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ., 78, 39–54, doi: https://doi.org/10.1016/S0034-4257(01)00248-6.
Tong, S. Q., J. Q. Zhang, Y. H. Bao, et al., 2017: Spatial and temporal variations of vegetation cover and the relationships with climate factors in Inner Mongolia based on GIMMS NDVI3g data. J. Arid Land, 9, 394–407, doi: https://doi.org/10.1007/s40333-017-0016-4.
Vargas, M., T. Miura, N. Shabanov, et al., 2013: An initial assessment of Suomi NPP VIIRS vegetation index EDR. J. Geophys. Res. Atmos., 118, 12,301–12,316, doi: https://doi.org/10.1002/2013JD020439.
Vermote, E. F., D. Tanre, J. L. Deuze, et al., 1997: Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens., 35, 675–686, doi: https://doi.org/10.1109/36.581987.
Wang, J. D., Z. T. Jiao, F. Gao, et al., 2003: Validation of MODIS albedo product by using field measurements and airborne multi-angular remote sensing observations. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Toulouse, doi: https://doi.org/10.1109/IGARSS.2003.1294283.
Wang, Z. S., C. B. Schaaf, Q. S. Sun, et al., 2018: Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sens. Environ., 207, 50–64, doi: https://doi.org/10.1016/j.rse.2018.02.001.
Wu, B. F., and H. Y. Liu, 1997: A simplified method of accurate geometric correction for NOAA AVHRR 1B data. Int. J. Remote Sens., 18, 1795–1808, doi: https://doi.org/10.1080/014311697218106.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Key Research and Development Program of China (2021YFB3900400) and National Natural Science Foundation of China (U2142212 and U2242211).
Rights and permissions
About this article
Cite this article
Li, S., Han, X., Zhang, Y. et al. First Look of Surface Vegetation from the Advanced Geostationary Radiation Imager (AGRI) onboard Fengyun-4B. J Meteorol Res 37, 536–550 (2023). https://doi.org/10.1007/s13351-023-3005-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-023-3005-x