Abstract
Sunshine duration (SD) is adopted widely to study global dimming/brightening. However, long-term simultaneous measurements of SD and closely related impact factors require further analysis to elucidate how and why SD has varied during the past decades. In this study, a long-term (1958–2021) SD data series obtained from the Shangdianzi Global Atmosphere Watch (GAW) station in China was analyzed to detect linear trends, climatic jumps, and climatic periods in SD using linear fitting, the Mann–Kendall trend test, and the continuous wavelet transform method. Annual SD exhibited steady dimming (−67.3 h decade−1) before 2010, followed by a period of brightening (189.9 h decade−1) during 2011–2020. An abrupt jump in annual SD occurred in 1995, and the annual SD anomaly exhibited significant oscillation with ∼3-yr periodicity during 1960–1978. Partial least squares analysis revealed that annual SD anomaly was associated with variations in relative humidity, gale days, cloud cover, and black carbon (BC). Further analysis of the clear-sky daily sunshine percentage (DSP) and simultaneous measurements of aerosol properties, including aerosol optical depth, aerosol extinction coefficient, single scattering albedo (SSA), BC, and total suspended particulates, suggested that variation in DSP was affected primarily by aerosol scattering and absorption. Furthermore, the hourly clear-sky SD at high aerosol loading was approximately 60% and 56% of that at middle and low aerosol loadings, respectively. The pattern of diurnal variation in clear-sky hourly SD, as well as the actual values, can be affected by the fine particulate concentration, aerosol extinction coefficient, and SSA.
This is a preview of subscription content, access via your institution.
References
Alados-Arboledas, L., H. Lyamani, and F. J. Olmo, 2003: Aerosol size properties at Armilla, Granada (Spain). Quart. J. Roy. Meteor. Soc., 129, 1395–1413, doi: https://doi.org/10.1256/qj.01.207.
Angell, J. K., 1990: Variation in United States cloudiness and sunshine duration between 1950 and the drought year of 1988. J. Climate, 3, 296–308, doi: https://doi.org/10.1175/1520-0442(1990)003<0296:VIUSCA>2.0.CO;2.
Bartoszek, K., D. Matuszko, and J. Soroka, 2020: Relationships between cloudiness, aerosol optical thickness, and sunshine duration in Poland. Atmos. Res., 245, 105097, doi: https://doi.org/10.1016/j.atmosres.2020.105097.
Brogniez, H., and P. E. Kirstetter, 2020: Coupling of clouds and tropospheric relative humidity in the tropical Western Atlantic: Insights from multisatellite observations. Geophys. Res. Lett., 47, e2020GL087466, doi: https://doi.org/10.1029/2020GL087466.
Che, H., X. Xia, J. Zhu, et al., 2014: Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos. Chem. Phys., 14, 2125–2138, doi: https://doi.org/10.5194/acp-14-2125-2014.
Che, H. Z., G. Y. Shi, X. Y. Zhang, et al., 2005: Analysis of 40 years of solar radiation data from China, 1961–2000. Geophys. Res. Lett., 32, L06803, doi: https://doi.org/10.1029/2004GL022322.
Che, H. Z., G. Y. Shi, X. Y. Zhang, et al., 2007: Analysis of sky conditions using 40 year records of solar radiation data in China. Theor. Appl. Climatol., 89, 83–94, doi: https://doi.org/10.1007/s00704-006-0258-0.
Chen, J., Z. Q. Ma, T. J. Hu, et al., 2019: Variation characteristics of atmospheric visibility and its influence factors in the background area of North China. Clim. Environ. Res., 24, 277–288, doi: https://doi.org/10.3878/j.issn.1006-9585.2018.18085. (in Chinese)
Chen, Y., N. Schleicher, Y. Z. Chen, et al., 2014: The influence of governmental mitigation measures on contamination characteristics of PM2.5 in Beijing. Sci. Total Environ., 490, 647–658, doi: https://doi.org/10.1016/j.scitotenv.2014.05.049.
Feng, F., and K. C. Wang, 2021: Merging high-resolution satellite surface radiation data with meteorological sunshine duration observations over China from 1983 to 2017. Remote Sens., 13, 602, doi: https://doi.org/10.3390/rs13040602.
Founda, D., A. Kalimeris, and F. Pierros, 2014: Multi annual variability and climatic signal analysis of sunshine duration at a large urban area of Mediterranean (Athens). Urban Clim., 10, 815–830, doi: https://doi.org/10.1016/j.uclim.2014.09.008.
Goni, S., H. A. Adannou, D. Diop, et al., 2019: Long-term variation of sunshine duration and their inter-action with meteorogical parameters over Chad, Central Africa. Nat. Resour., 10, 47–58, doi: https://doi.org/10.4236/nr.2019.103004.
Hamed, K. H., 2008: Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol., 349, 350–363, doi: https://doi.org/10.1016/j.jhydrol.2007.11.009.
Holben, B. N., T. F. Eck, I. Slutsker, et al., 1998: AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16, doi: https://doi.org/10.1016/S0034-4257(98)00031-5.
Iqbal, M., 1983: An Introduction to Solar Radiation. Academic Press, Ontario, Canada, 390 pp.
Jia, B., Y. Wang, Y. Yao, et al., 2015: A new indicator on the impact of large-scale circulation on wintertime particulate matter pollution over China. Atmos. Chem. Phys., 15, 11,919–11,929, doi: https://doi.org/10.5194/acp-15-11919-2015.
Jia, Q. Y., W. Y. Yu, L. Zhou, et al., 2017: Atmospheric and surface-condition effects on CO2 exchange in the Liaohe Delta wetland, China. Water, 9, 806, doi: https://doi.org/10.3390/w9100806.
Kaiser, D. P., 1998: Analysis of total cloud amount over China, 1951–1994. Geophys. Res. Lett., 25, 3599–3602, doi: https://doi.org/10.1029/98GL52784.
Kaiser, D. P., and Y. Qian, 2002: Decreasing trends in sunshine duration over China for 1954–1998: Indication of increased haze pollution? Geophys. Res. Lett., 29, 2042, doi: https://doi.org/10.1029/2002GL016057.
Kazadzis, S., D. Founda, B. E. Psiloglou, et al., 2018: Long-term series and trends in surface solar radiation in Athens, Greece. Atmos. Chem. Phys., 18, 2395–2411, doi: https://doi.org/10.5194/acp-18-2395-2018.
Kendall, M. G., 1970: Rank Correlation Methods. Griffin, London, 212 pp.
Kitsara, G., G. Papaioannou, A. Papathanasiou, et al., 2013: Dimming/brightening in Athens: Trends in sunshine duration, cloud cover and reference evapotranspiration. Water Resour. Manag., 27, 1623–1633, doi: https://doi.org/10.1007/s11269-012-0229-4.
Kumari, B. P., and B. N. Goswami, 2010: Seminal role of clouds on solar dimming over the Indian monsoon region. Geophys. Res. Lett., 37, L06703, doi: https://doi.org/10.1029/2009GL042133.
Liang, F., and X. A. Xia, 2005: Long-term trends in solar radiation and the associated climatic factors over China for 1961–2000. Ann. Geophys., 23, 2425–2432, doi: https://doi.org/10.5194/angeo-23-2425-2005.
Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715–737, doi: https://doi.org/10.5194/acp-5-715-2005.
Lyamani, H., F. J. Olmo, and L. Alados-Arboledas, 2005: Saharan dust outbreak over southeastern Spain as detected by sun photometer. Atmos. Environ., 39, 7276–7284, doi: https://doi.org/10.1016/j.atmosenv.2005.09.011.
Magee, N. B., E. Melaas, P. M. Finocchio, et al., 2014: Blue hill observatory sunshine: Assessment of climate signals in the longest continuous meteorological record in North America. Bull. Amer. Meteor. Soc., 95, 1741–1751, doi: https://doi.org/10.1175/BAMS-D-12-00206.1.
Manara, V., M. Brunetti, M. Maugeri, et al., 2017: Sunshine duration and global radiation trends in Italy (1959–2013): To what extent do they agree? J. Geophys. Res. Atmos., 122, 4312–4331, doi: https://doi.org/10.1002/2016JD026374.
Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245–259, doi: https://doi.org/10.2307/1907187.
McIntosh, A. R., F. L. Bookstein, J. V. Haxby, et al., 1996: Spatial pattern analysis of functional brain images using partial least squares. NeuroImage, 3, 143–157, doi: https://doi.org/10.1006/nimg.1996.0016.
Norris, J. R., and M. Wild, 2007: Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming”, and solar “brightening”. J. Geophys. Res. Atmos., 112, D08214, doi: https://doi.org/10.1029/2006JD007794.
Norris, J. R., and M. Wild, 2009: Trends in aerosol radiative effects over China and Japan inferred from observed cloud cover, solar “dimming”, and solar “brightening”. J. Geophys. Res. Atmos., 114, D00D15, doi: https://doi.org/10.1029/2008JD011378.
Pallé, E., and C. J. Butler, 2001: Sunshine records from Ireland: Cloud factors and possible links to solar activity and cosmic rays. Int. J. Climatol., 21, 709–729, doi: https://doi.org/10.1002/joc.657.
Pallé, E., and C. J. Butler, 2002: Comparison of sunshine records and synoptic cloud observations: A case study for Ireland. Phys. Chem. Earth, 27, 405–414, doi: https://doi.org/10.1016/S1474-7065(02)00020-7.
Pueschel, R. F., and K. E. Noll, 1967: Visibility and aerosol size frequency distribution. J. Appl. Meteor., 6, 1045–1052, doi: https://doi.org/10.1175/1520-0450(1967)006<1045:VAASFD>2.0.CO;2.
Qian, Y., D. P. Kaiser, L. R. Leung, et al., 2006: More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys. Res. Lett., 33, L01812, doi: https://doi.org/10.1029/2005GL024586.
Sanchez-Lorenzo, A., and M. Wild, 2012: Decadal variations in estimated surface solar radiation over Switzerland since the late 19th century. Atmos. Chem. Phys., 12, 8635–8644, doi: https://doi.org/10.5194/acp-12-8635-2012.
Sanchez-Lorenzo, A., J. Calbó, M. Brunetti, et al., 2009: Dimming/brightening over the Iberian Peninsula: Trends in sunshine duration and cloud cover and their relations with atmospheric circulation. J. Geophys. Res. Atmos., 114, D00D09, doi: https://doi.org/10.1029/2008JD011394.
Sanchez-Romero, A., A. Sanchez-Lorenzo, J. Calbó, et al., 2014: The signal of aerosol-induced changes in sunshine duration records: A review of the evidence. J. Geophys. Res. Atmos., 119, 4657–4673, doi: https://doi.org/10.1002/2013JD021393.
Sanchez-Lorenzo, A., M. Wild, M. Brunetti, et al., 2015: Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos., 120, 9555–9569, doi: https://doi.org/10.1002/2015JD023321.
Schmid, B., and C. Wehrli, 1995: Comparison of sun photometer calibration by use of the Langley technique and the standard lamp. Appl. Opt., 34, 4500–4512, doi: https://doi.org/10.1364/AO.34.004500.
Shahid, S., 2010: Rainfall variability and the trends of wet and dry periods in Bangladesh. Int. J. Climatol., 30, 2299–2313, doi: https://doi.org/10.1002/joc.2053.
Shen, Z. P., and H. Zhang, 2009: Analysis on the factors affecting surface solar radiation and its spectral distribution. Acta Energi. Sol. Sin., 30, 1389–1395, doi: https://doi.org/10.3321/j.issn:0254-0096.2009.10.017. (in Chinese)
Soni, V. K., G. Pandithurai, and D. S. Pai, 2016: Is there a transition of solar radiation from dimming to brightening over India? Atmos. Res., 169, 209–224, doi: https://doi.org/10.1016/j.atmosres.2015.10.010.
Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 61–78, doi: https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
Wang, H. S., D. S. Liu, H. Lin, et al., 2015: NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan Plateau. Int. J. Climatol., 35, 687–698, doi: https://doi.org/10.1002/joc.4013.
Wang, K. C., 2014: Measurement biases explain discrepancies between the observed and simulated decadal variability of surface incident solar radiation. Sci. Rep., 4, 6144, doi: https://doi.org/10.1038/srep06144.
Wang, K. C., R. E. Dickinson, M. Wild, et al., 2012: Atmospheric impacts on climatic variability of surface incident solar radiation. Atmos. Chem. Phys., 12, 9581–9592, doi: https://doi.org/10.5194/acp-12-9581-2012.
Wang, K. C., Q. Ma, Z. J. Li, et al., 2015: Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses. J. Geophys. Res. Atmos., 120, 6500–6514, doi: https://doi.org/10.1002/2015JD023420.
Wang, Q. Y., H. Zhang, S. Yang, et al., 2022: An assessment of land energy balance over East Asia from multiple lines of evidence and the roles of the Tibet Plateau, aerosols, and clouds. Atmos. Chem. Phys., 22, 15,867–15,886, doi: https://doi.org/10.5194/acp-22-15867-2022.
Wang, Y. W., Y. H. Yang, N. Zhao, et al., 2012: The magnitude of the effect of air pollution on sunshine hours in China. J. Geophys. Res. Atmos., 117, D00V14, doi: https://doi.org/10.1029/2011JD016753.
Wang, Y. W., Y. H. Yang, S. M. Han, et al., 2013: Sunshine dimming and brightening in Chinese cities (1955–2011) was driven by air pollution rather than clouds. Clim. Res., 56, 11–20, doi: https://doi.org/10.3354/cr01139.
Wei, F. Y., 2007: Modern Climatic Statistical Diagnosis and Prediction. 2nd ed. China Meteorological Press, Beijing, 296 pp. (in Chinese)
Wild, M., 2009: Global dimming and brightening: A review. J. Geophys. Res. Atmos., 114, D00D16, doi: https://doi.org/10.1029/2008JD011470.
Wild, M., 2012: Enlightening global dimming and brightening. Bull. Amer. Meteor. Soc., 93, 27–37, doi: https://doi.org/10.1175/BAMS-D-11-00074.1.
Wild, M., H. Gilgen, A. Roesch, et al., 2005: From dimming to brightening: Decadal changes in solar radiation at earth’s surface. Science, 308, 847–850, doi: https://doi.org/10.1126/science.1103215.
WMO, 2006: Guide to Meteorological Instruments and Methods of Observation–Preliminary Seventh Edition. WMO-No. 8, WMO, Geneva, Switzerland, 569 pp.
Wold, S., M. Sjöström, and L. Eriksson, 2001: PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst., 58, 109–130, doi: https://doi.org/10.1016/S0169-7439(01)00155-1.
Xia, X. G., 2010: Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J. Geophys. Res. Atmos., 115, D00K06, doi: https://doi.org/10.1029/2009JD012879.
Yan, P., X. L. Pan, J. Tang, et al., 2009: Hygroscopic growth of aerosol scattering coefficient: A comparative analysis between urban and suburban sites at winter in Beijing. Particuology, 7, 52–60, doi: https://doi.org/10.1016/j.partic.2008.11.009.
Yan, P., J. Tang, J. Huang, et al., 2008: The measurement of aerosol optical properties at a rural site in Northern China. Atmos. Chem. Phys., 8, 2229–2242, doi: https://doi.org/10.5194/acp-7-13001-2007.
Yan, Z. H., S. Q. Wang, D. Ma, et al., 2019: Meteorological factors affecting pan evaporation in the Haihe River basin, China. Water, 11, 317, doi: https://doi.org/10.3390/w11020317.
Yan, Z. W., and P. D. Jones, 2008: Detecting inhomogeneity in daily climate series using wavelet analysis. Adv. Atmos. Sci., 25, 157–163, doi: https://doi.org/10.1007/s00376-008-0157-7.
Yang, S., X. L. Wang, and M. Wild, 2019: Causes of dimming and brightening in China inferred from homogenized daily clear-sky and all-sky in situ surface solar radiation records (1958–2016). J. Climate, 32, 5901–5913, doi: https://doi.org/10.1175/JCLID-18-0666.1.
Yang, Y. H., N. Zhao, X. H. Hao, et al., 2009: Decreasing trend of sunshine hours and related driving forces in North China. Theor. Appl. Climatol., 97, 91–98, doi: https://doi.org/10.1007/s00704-008-0049-x.
Yin, Q., H. Zhang, and J. H. He, 2011: Long-term change of surface total solar radiation and influencing factors over East China in recent 48 years. J. Atmos. Environ. Opt., 6, 37–46, doi: https://doi.org/10.3969/j.issn.1673-6141.2011.01.006. (in Chinese)
Zhang, H., Q. Yin, T. Nakajima, et al., 2013: Influence of changes in solar radiation on changes of surface temperature in China. Acta Meteor. Sinica, 27, 87–97, doi: https://doi.org/10.1007/s13351-013-0109-8.
Zhang, Z. Y., X. L. Zhang, D. Y. Gong, et al., 2015: Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmos. Environ., 108, 67–75, doi: https://doi.org/10.1016/j.atmosenv.2015.02.071.
Zhao, P. S., F. Dong, D. He, et al., 2013: Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos. Chem. Phys., 13, 4631–4644, doi: https://doi.org/10.5194/acp-13-4631-2013.
Zhou, H. G., W. J. Quan, Z. F. Wang, et al., 2021: Comparison of sunshine duration measurements between a Jordan sunshine recorder and three automatic sensors at Shangdianzi GAW station. J. Meteor. Res., 35, 716–728, doi: https://doi.org/10.1007/s13351-021-0158-3.
Zhu, J. L., H. Liao, and J. P. Li, 2012: Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys. Res. Lett., 39, L09809, doi: https://doi.org/10.1029/2012GL051428.
Zhu, S. H., H. Zhang, X. D. Wei, et al., 2018: Simulation of aerosol influences on shortwave radiative flux under different pollution conditions. Acta Meteor. Sinica, 76, 790–802, doi: https://doi.org/10.11676/qxxb2018.031. (in Chinese)
Acknowledgments
We are grateful to Prof. Huizheng Che of the Chinese Academy of Meteorological Sciences for providing the high-quality AOD and AE data measured by the CE-318 at SDZ. The authors would like to thank all members of SDZ for maintaining the instruments used in the current study. We also thank the anonymous reviewers and editors whose comments and suggestions have helped greatly improve the presentation of this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the China Scholarship Council (202205330024), National Key Research and Development Program of China (2017 YFB0504002), National Science and Technology Infrastructure Platform Project (2017), and Special Fund for Basic Scientific Research of Institute of Urban Meteorology (IUMKY201735).
Rights and permissions
About this article
Cite this article
Quan, W., Ma, Z., Li, Z. et al. Variation in Sunshine Duration and Related Aerosol Influences at Shangdianzi GAW Station, China: 1958–2021. J Meteorol Res 37, 551–563 (2023). https://doi.org/10.1007/s13351-023-2196-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-023-2196-5