Abstract
Hinnamnor was the first super typhoon in the western North Pacific basin in 2022. It had several prominent characteristics, such as rapid intensification after its formation, three eyewall cycles, and a sudden recurvature of its track. Based on multi-source observational and reanalysis datasets, two secondary eyewall formation (SEF) cycles occurred during Super Typhoon Hinnamnor’s lifetime. The first SEF happened near the time when Hinnamnor achieved its maximum intensity, and it seems that its internal dynamics dominated the SEF process after the development of shear-induced asymmetric spiral rainbands. The merger of a tropical depression with Hinnamnor led to a continuous increase in both its inner-core size and outer-core circulation, causing generation of the second SEF. It is inferred that the external and internal dynamics worked together during the second SEF process. The concentric eyewall structure maintained for approximately 84 h under the moderate vertical wind shear. Also, unique changes in intensity accompanied the two structural changes.
This is a preview of subscription content,
to check access.References
Abarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 3216–3230, doi: https://doi.org/10.1175/JAS-D-12-0318.1.
Abarca, S. F., and M. T. Montgomery, 2014: Departures from axisymmetric balance dynamics during secondary eyewall formation. J. Atmos. Sci., 71, 3723–3738, doi: https://doi.org/10.1175/JAS-D-14-0018.1.
Abarca, S. F., M. T. Montgomery, and J. C. McWilliams, 2015: The azimuthally averaged boundary layer structure of a numerically simulated major hurricane. J. Adv. Model. Earth Syst., 7, 1207–1219, doi: https://doi.org/10.1002/2015MS000457.
Ahern, K., R. E. Hart, and M. A. Bourassa, 2022: Asymmetric hurricane boundary layer structure during storm decay. Part II: Secondary eyewall formation. Mon. Wea. Rev., 150, 1915–1936, doi: https://doi.org/10.1175/MWR-D-21-0247.1.
Black, M. L., and H. E. Willoughby, 1992: The concentric eye-wall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947–957, doi: https://doi.org/10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO;2.
Black, P. G., H. V. Senn, and C. L. Courtright, 1972: Airborne radar observations of eye configuration changes, bright band distribution, and precipitation tilt during the 1969 multiple seeding experiments in hurricane Debbie. Mon. Wea. Rev., 100, 208–217, doi: https://doi.org/10.1175/1520-0493(1972)100<0208:AROOEC>2.3.CO;2.
Chen, G. H., 2018: Secondary eyewall formation and concentric eyewall replacement in association with increased low-level inner-core diabatic cooling. J. Atmos. Sci., 75, 2659–2685, doi: https://doi.org/10.1175/JAS-D-17-0207.1.
Chen, G. H., C.-C. Wu, and Y.-H. Huang, 2018: The role of near-core convective and stratiform heating/cooling in tropical cyclone structure and intensity. J. Atmos. Sci., 75, 297–326, doi: https://doi.org/10.1175/JAS-D-17-0122.1.
Dai, Y., S. J. Majumdar, and D. S. Nolan, 2017: Secondary eye-wall formation in tropical cyclones by outflow–jet interaction. J. Atmos. Sci., 74, 1941–1958, doi: https://doi.org/10.1175/JAS-D-16-0322.1.
Didlake, A. C. Jr., and R. A. Jr. Houze, 2013: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 1891–1911, doi: https://doi.org/10.1175/JAS-D-12-0245.1.
Didlake, A. C. Jr., P. D. Reasor, R. F. Rogers, et al., 2018: Dynamics of the transition from spiral rainbands to a secondary eye-wall in Hurricane Earl (2010). J. Atmos. Sci., 75, 2909–2929, doi: https://doi.org/10.1175/JAS-D-17-0348.1.
Elsberry, R. L., L. S. Chen, J. Davidson, et al., 2013: Advances in understanding and forecasting rapidly changing phenomena in tropical cyclones. Trop. Cyclone Res. Rev., 2, 13–24, doi: https://doi.org/10.6057/2013TCRR01.02.
Fang, J., and F. Q. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 3327–3346, doi: https://doi.org/10.1175/MWR-D-10-05021.1.
Fortner, C. L. E. Jr., 1958: Typhoon Sarah, 1956. Bull. Amer. Meteor. Soc., 39, 633–639, doi: https://doi.org/10.1175/1520-0477-39.12.633.
Gentry, R. C., 1970: Hurricane Debbie modification experiments, August 1969. Science, 168, 473–475, doi: https://doi.org/10.1126/science.168.3930.473.
Hawkins, H. F., 1971: Comparison of results of the Hurricane Debbie (1969) modification experiments with those from Rosenthal’s numerical model simulation experiments. Mon. Wea. Rev., 99, 427–434, doi: https://doi.org/10.1175/1520-0493(1971)099<0427:COROTH>2.3.CO;2.
Hawkins, J. D., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. Proceedings of the 26th Conference on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc., Miami Beach, FL, P1.7.
Hawkins J. D., and M. Helveston, 2008: Tropical Cyclone Multiple Eyewall Characteristics. Preprints of the 28th Conference on Hurricanes and Tropical Meteorology. Orlando, FL, Amer. Meteor. Soc., 14B.1.
Hawkins, J. D., M. Helveston, T. F. Lee, et al., 2006: Tropical Cyclone Multiple Eyewall Configurations. Proceedings of the 27th Conference on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc., Miami, FL, 6B.1.
Hence, D. A., and R. A. Jr. Houze, 2012: Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 1021–1036, doi: https://doi.org/10.1175/JAS-D-11-0119.1.
Holliday, C. R., 1977: Double intensification of Typhoon Gloria, 1974. Mon. Wea. Rev., 105, 523–528, doi: https://doi.org/10.1175/1520-0493(1977)105<0523:DIOTG>2.0.CO;2.
Hoose, H. M., and J. A. Colón, 1970: Some aspects of the radar structure of Hurricane Beulah on September 9, 1967. Mon. Wea. Rev., 98, 529–533, doi: https://doi.org/10.1175/1520-0493(1970)098<0529:SAOTRS>2.3.CO;2.
Houze, R. A. Jr., S. S. Chen, W.-C. Lee, et al., 2006: The hurricane rainband and intensity change experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87, 1503–1522, doi: https://doi.org/10.1175/BAMS-87-11-1503.
Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662–674, doi: https://doi.org/10.1175/JAS-D-11-0114.1.
Jordan, C. L., 1966: Surface pressure variations at coastal stations during the period of irregular motion of Hurricane Carla of 1961. Mon. Wea. Rev., 94, 454–458, doi: https://doi.org/10.1175/1520-0493(1966)094<0454:SPVACS>2.3.CO;2.
Jordan, C. L., and F. J. Schatzle, 1961: Weather note: The “double eye” of Hurricane Donna. Mon. Wea. Rev., 89, 354–356, doi: https://doi.org/10.1175/1520-0493(1961)089<0354:WNTDEO>2.0.CO;2.
Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones. J. Atmos. Sci., 70, 2808–2830, doi: https://doi.org/10.1175/JAS-D-13-046.1.
Kepert, J. D., and D. S. Nolan, 2014: Reply to “comments on ‘how does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?’”. J. Atmos. Sci., 71, 4692–4704, doi: https://doi.org/10.1175/JAS-D-14-0014.1.
Komaromi, W. A., and J. D. Doyle, 2018: On the dynamics of tropical cyclone and trough interactions. J. Atmos. Sci., 75, 2687–2709, doi: https://doi.org/10.1175/JAS-D-17-0272.1.
Kuo, H.-C., L.-Y. Lin, C.-P. Chang, et al., 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722–2734, doi: https://doi.org/10.1175/JAS3286.1.
Kuo, H.-C., W. H. Schubert, C.-L. Tsai, et al., 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 5183–5198, doi: https://doi.org/10.1175/2008MWR2378.1.
Leroux, M.-D., M. Plu, D. Barbary, et al., 2013: Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. J. Atmos. Sci., 70, 2547–2565, doi: https://doi.org/10.1175/JAS-D-12-0293.1.
Leroux, M.-D., M. Plu, and F. Roux, 2016: On the sensitivity of tropical cyclone intensification under upper-level trough forcing. Mon. Wea. Rev., 144, 1179–1202, doi: https://doi.org/10.1175/mwr-d-15-0224.1.
Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2014: Effects of diabatic heating and cooling in the rapid filamentation zone on structure and intensity of a simulated tropical cyclone. J. Atmos. Sci., 71, 3144–3163, doi: https://doi.org/10.1175/JAS-D-13-0312.1.
McNoldy, B. D., 2004: Triple eyewall in Hurricane Juliette. Bull. Amer. Meteor. Soc., 85, 1663–1666, doi: https://doi.org/10.1175/BAMS-85-11-1663.
Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 1093–1105, doi: https://doi.org/10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2.
Molinari, J., J. A. Zhang, R. F. Rogers, et al., 2019: Repeated eye-wall replacement cycles in hurricane frances (2004). Mon. Wea. Rev., 147, 2009–2022, doi: https://doi.org/10.1175/MWR-D-18-0345.1.
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465, doi: https://doi.org/10.1002/qj.49712353810.
Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 37–66, doi: https://doi.org/10.22499/2.6401.005.
Qiu, X., and Z.-M. Tan, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953–974, doi: https://doi.org/10.1175/JAS-D-12-084.1.
Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394, doi: https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.
Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 3829–3847, doi: https://doi.org/10.1175/MWR-D-11-00034.1.
Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res. Atmos., 113, D12112, doi: https://doi.org/10.1029/2007JD008897.
Tyner, B., P. Zhu, J. A. Zhang, et al., 2018: A top-down pathway to secondary eyewall formation in simulated tropical cyclones. J. Geophys. Res. Atmos., 123, 174–197, doi: https://doi.org/10.1002/2017JD027410.
Wang, H., and Y. Q. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29–48, doi: https://doi.org/10.1175/MWR-D-13-00070.1.
Wang, H., C.-C. Wu, and Y. Q. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. J. Atmos. Sci., 73, 3911–3930, doi: https://doi.org/10.1175/JAS-D-15-0146.1.
Wang, H., Y. Q. Wang, J. Xu, et al., 2019: The axisymmetric and asymmetric aspects of the secondary eyewall formation in a numerically simulated tropical cyclone under idealized conditions on a. f plane. J. Atmos. Sci., 76, 357–378, doi: https://doi.org/10.1175/JAS-D-18-0130.1.
Wang, Q., D. J. Zhao, Y. H. Duan, et al., 2023: Super Typhoon Hinnamnor (2022) with a record-breaking lifespan over the western North Pacific. Adv. Atmos. Sci., 40, 1558–1566, doi: https://doi.org/10.1007/s00376-023-2336-y.
Wang, X. B., Y. M. Ma, and N. E. Davidson, 2013: Secondary eyewall formation and eyewall replacement cycles in a simulated hurricane: Effect of the net radial force in the hurricane boundary layer. J. Atmos. Sci., 70, 1317–1341, doi: https://doi.org/10.1175/JAS-D-12-017.1.
Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257–278, doi: https://doi.org/10.1007/s00703-003-0055-6.
Wang, Y.-F., and Z.-M. Tan, 2020: Outer rainbands-driven secondary eyewall formation of tropical cyclones. J. Atmos. Sci., 77, 2217–2236, doi: https://doi.org/10.1175/JAS-D-19-0304.1.
Wang, Y.-F., and Z.-M. Tan, 2022: Essential dynamics of the vertical wind shear affecting the secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 79, 2831–2847, doi: https://doi.org/10.1175/JAS-D-21-0340.1.
Wang, Y. Q., and H. Wang, 2013: The inner-core size increase of Typhoon Megi (2010) during its rapid intensification phase. Trop. Cyclone Res. Rev., 2, 65–80, doi: https://doi.org/10.6057/2013TCRR02.01.
Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242–264, doi: https://doi.org/10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2.
Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411, doi: https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.
Yang, Y.-T., H.-C. Kuo, E. A. Hendricks, et al., 2013: Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Mon. Wea. Rev., 141, 2632–2648, doi: https://doi.org/10.1175/MWR-D-12-00251.1.
Yu, C.-L., A. C. Jr. Didlake, F. Q. Zhang, et al., 2021: Asymmetric rainband processes leading to secondary eyewall formation in a model simulation of Hurricane Matthew (2016). J. Atmos. Sci., 78, 29–49, doi: https://doi.org/10.1175/JAS-D-20-0061.1.
Zhang, F. Q., D. D. Tao, Y. Q. Sun, et al., 2017: Dynamics and predictability of secondary eyewall formation in sheared tropical cyclones. J. Adv. Model. Earth Syst., 9, 89–112, doi: https://doi.org/10.1002/2016MS000729.
Zhao, D. J., Y. B. Yu, and L. S. Chen, 2021: Impact of the monsoonal surge on extreme rainfall of landfalling tropical cyclones. Adv. Atmos. Sci., 38, 771–784, doi: https://doi.org/10.1007/s00376-021-0281-1.
Zhao, D. J., W. H. Gao, H. X. Xu, et al., 2022: A modeling study of cloud physical properties of extreme and non-extreme precipitation in landfalling typhoons over China. Atmos. Res., 277, 106311, doi: https://doi.org/10.1016/j.atmosres.2022.106311.
Zhu, P., Z. D. Zhu, S. Gopalakrishnan, et al., 2015: Impact of subgrid-scale processes on eyewall replacement cycle of tropical cyclones in HWRF system. Geophys. Res. Lett., 42, 10,027–10,036, doi: https://doi.org/10.1002/2015GL066436.
Zhu, X.-S., H. Yu, and Y. Q. Wang, 2022: Downwind development in a stationary band complex leading to the secondary eyewall formation in the simulated Typhoon Soudelor (2015). Mon. Wea. Rev., 150, 2459–2483, doi: https://doi.org/10.1175/MWR-D-21-0318.1.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation of China (42175008, 42192554, and 41730960), Shanghai Typhoon Research Foundation (TFJJ202201), Basic Research Fund of Chinese Academy of Meteorological Sciences (CAMS) (2020Y015), and Open Fund of the State Key Laboratory of Severe Weather of CAMS (2021LASW-A14).
Rights and permissions
About this article
Cite this article
Wang, H., Yu, Y., Zhao, D. et al. Unusual Evolution of the Multiple Eyewall Cycles in Super Typhoon Hinnamnor (2022). J Meteorol Res 37, 431–440 (2023). https://doi.org/10.1007/s13351-023-2193-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-023-2193-8