Abstract
Model simulations show that drought may become more severe and widespread in the 21st century due to human-induced global warming. However, the contributions from the key factors to the model-projected drought changes in China have not yet been examined in detail. We used the self-calibrated Palmer Drought Severity Index with Penman–Monteith potential evapotranspiration (scPDSIpm) based on 10 model simulations selected from the Coupled Model Intercomparison Project Phase 6 (CMIP6). We investigated the contributions from precipitation (P), near-surface air temperature and specific humidity [Δ(T + q)], net surface longwave radiation (LW), net surface shortwave radiation (SW), and wind speed (WS) to the future changes in scPDSIpm, including the long-term mean, drying area, probability distribution function (PDF), drought frequency, and drought duration based on the scPDSIpm over China. Our results show that model-projected drying mainly occurs over southern China, whereas the dry areas under drought conditions increase from 20% to about 23%/30% under the two scenarios of the shared socioeconomic pathway (SSP2-4.5/SSP5-8.5) from 1985 to 2100, despite large uncertainties in individual projections partly due to internal variability. Drought frequency is projected to increases by about 10%–54% (15%–88%) under the SSP2-4.5 (SSP5-8.5) scenario by the late 21st century, along with increases in drought duration. These changes are accompanied by a decrease in the mean scPDSIpm and flattening of the PDFs. The changes in drying over southern China are mainly attributed to surface warming and the increased surface vapor pressure deficit (VPD), with small contributions from changes in the surface net radiation. The changes in wetting over northern China mostly result from increased precipitation along with a small wetting effect from the changes in wind speed.
References
Bullock, J. A., G. D. Haddow, and D. P. Coppola, 2013: Hazards. Introduction to Homeland Security, J. A. Bullock, G. D. Haddow, and D. P. Coppola, Eds., 4th ed. Butterworth-Heinemann, Waltham, MA, 57–95, doi: https://doi.org/10.1016/B978-0-12-415802-3.00003-8.
Burke, E. J., and S. J. Brown, 2008: Evaluating uncertainties in the projection of future drought. J. Hydrometeor., 9, 292–299, doi: https://doi.org/10.1175/2007JHM929.1.
Burke, E. J., S. J. Brown, and N. Christidis, 2006: Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeor., 7, 1113–1125, doi: https://doi.org/10.1175/JHM544.1.
Chen, H. P., and J. Q. Sun, 2017: Anthropogenic warming has caused hot droughts more frequently in China. J. Hydrol., 544, 306–318, doi: https://doi.org/10.1016/j.jhydrol.2016.11.044.
Chen, L. Q., G. J. Wang, L. J. Miao, et al., 2021: Future drought in CMIP6 projections and the socioeconomic impacts in China. Int. J. Climatol., 41, 4151–4170, doi: https://doi.org/10.1002/joc.7064.
Cook, B. I., J. E. Smerdon, R. Seager, et al., 2014: Global warming and 21st century drying. Climate Dyn., 43, 2607–2627, doi: https://doi.org/10.1007/s00382-014-2075-y.
Cook, B. I., J. S. Mankin, K. Marvel, et al., 2020: Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future, 8, e2019EF001461, doi: https://doi.org/10.1029/2019EF001461.
Dai, A. G., 2011a: Drought under global warming: A review. WIREs Clim. Change, 2, 45–65, doi: https://doi.org/10.1002/wcc.81.
Dai, A. G., 2011b: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. Atmos., 116, D12115, doi: https://doi.org/10.1029/2010JD015541.
Dai, A. G., 2013: Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52–58, doi: https://doi.org/10.1038/nclimate1633.
Dai, A. G., and T. B. Zhao, 2017: Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Climatic Change, 144, 519–533, doi: https://doi.org/10.1007/s10584-016-1705-2.
Dai, A. G., K. E. Trenberth, and T. R. Karl, 1998: Global variations in droughts and wet spells: 1900–1995. Geophys. Res. Lett., 25, 3367–3370, doi: https://doi.org/10.1029/98GL52511.
Dai, A. G., K. E. Trenberth, and T. T. Qian, 2004: A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 1117–1130, doi: https://doi.org/10.1175/JHM-386.1.
Dai, A. G., T. B. Zhao, and J. Chen, 2018: Climate change and drought: A precipitation and evaporation perspective. Curr. Clim. Change Rep., 4, 301–312, doi: https://doi.org/10.1007/s40641-018-0101-6.
Eyring, V., S. Bony, G. A. Meehl, et al., 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958, doi: https://doi.org/10.5194/gmd-9-1937-2016.
Hobbins, M. T., A. G. Dai, M. L. Roderick, et al., 2008: Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys. Res. Lett., 35, L12403, doi: https://doi.org/10.1029/2008GL033840.
Hoeting, J. A., D. Madigan, A. E. Raftery, et al., 1999: Bayesian model averaging: A tutorial. Stat. Sci., 14, 382–417, doi: https://doi.org/10.1214/ss/1009212519.
Liang, Y. L., Y. L. Wang, X. D. Yan, et al., 2018: Projection of drought hazards in China during twenty-first century. Theor. Appl. Climatol., 133, 331–341, doi: https://doi.org/10.1007/s00704-017-2189-3.
Liu, X. L., C. X. Li, T. B. Zhao, et al., 2020: Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models. Atmos. Oceanic Sci. Lett., 13, 568–575, doi: https://doi.org/10.1080/16742834.2020.1824983.
Massoud, E. C., H. Lee, P. B. Gibson, et al., 2020: Bayesian model averaging of climate model projections constrained by precipitation observations over the contiguous United States. J. Hydrometeor., 21, 2401–2418, doi: https://doi.org/10.1175/JHM-D-19-0258.1.
Mehran, A., A. AghaKouchak, and T. J. Phillips, 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 1695–1707, doi: https://doi.org/10.1002/2013JD021152.
Meinshausen, M., Z. R. J. Nicholls, J. Lewis, et al., 2020: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev., 13, 3571–3605, doi: https://doi.org/10.5194/gmd-13-3571-2020.
Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. J. Hydrol., 391, 202–216, doi: https://doi.org/10.1016/j.jhydrol.2010.07.012.
Palmer, W. C., 1965: Meteorological drought. U. S. Weather Bureau Research Paper No. 45, 58 pp. Available at http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf. Accessed on 23 March 2023.
Prein, A. F., W. Langhans, G. Fosser, et al., 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323–361, doi: https://doi.org/10.1002/2014RG000475.
Prudhomme, C., I. Giuntoli, E. L. Robinson, et al., 2014: Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA, 111, 3262–3267, doi: https://doi.org/10.1073/pnas.1222473110.
Rind, D., R. Goldberg, J. Hansen, et al., 1990: Potential evapotranspiration and the likelihood of future drought. J. Geophys. Res. Atmos., 95, 9983–10,004, doi: https://doi.org/10.1029/JD095iD07p09983.
Scheff, J., and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 1539–1558, doi: https://doi.org/10.1175/JCLI-D-13-00233.1.
Sheffield, J., and E. F. Wood, 2008: Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dyn., 31, 79–105, doi: https://doi.org/10.1007/s00382-007-0340-z.
Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435–438, doi: https://doi.org/10.1038/nature11575.
Song, Z. H., J. Xia, D. X. She, et al., 2021: Assessment of meteorological drought change in the 21st century based on CMIP6 multi-model ensemble projections over mainland China. J. Hydrol., 601, 126643, doi: https://doi.org/10.1016/j.jhydrol.2021.126643.
Su, B. D., J. L. Huang, T. Fischer, et al., 2018: Drought losses in China might double between the 1.5°C and 2.0°C warming. Proc. Natl. Acad. Sci. USA, 115, 10,600–10,605, doi: https://doi.org/10.1073/pnas.1802129115.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183–7192, doi: https://doi.org/10.1029/2000JD900719.
Taylor, I. H., E. Burke, L. McColl, et al., 2013: The impact of climate mitigation on projections of future drought. Hydrol. Earth Syst. Sci., 17, 2339–2358, doi: https://doi.org/10.5194/hess-17-2339-2013.
van der Schrier, G., P. D. Jones, and K. R. Briffa, 2011: The sensitivity of the PDSI to the Thornthwaite and Penman–Monteith parameterizations for potential evapotranspiration. J. Geophys. Res. Atmos., 116, D03106, doi: https://doi.org/10.1029/2010JD015001.
van der Schrier, G., D. Efthymiadis, K. R. Briffa, et al., 2007: European alpine moisture variability for 1800–2003. Int. J. Climatol., 27, 415–427, doi: https://doi.org/10.1002/joc.1411.
van der Schrier, G., J. Barichivich, K. R. Briffa, et al., 2013: A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos., 118, 4025–4048, doi: https://doi.org/10.1002/jgrd.50355.
Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 1696–1718, doi: https://doi.org/10.1175/2009JCLI2909.1.
Wehner, M., D. R. Easterling, J. H. Lawrimore, et al., 2011: Projections of future drought in the continental United States and Mexico. J. Hydrometeor., 12, 1359–1377, doi: https://doi.org/10.1175/2011JHM1351.1.
Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating Palmer Drought Severity Index. J. Climate, 12, 2335–2351, doi: https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.
Wilhite, D. A., 2000: Drought as a natural hazard: Concepts and definitions. Drought: A Global Assessment, D. A. Wilhite, Ed., Routledge, London, 3–18.
Yao, N., L. C. Li, P. Y. Feng, et al., 2020: Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs. Sci. Total Environ., 704, 135245, doi: https://doi.org/10.1016/j.scitotenv.2019.135245.
Zhai, J. Q., B. D. Su, V. Krysanova, et al., 2010: Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J. Climate, 23, 649–663, doi: https://doi.org/10.1175/2009JCLI2968.1.
Zhang, Q., Y. B. Yao, Y. H. Li, et al., 2020: Causes and changes of drought in China: Research progress and prospects. J. Meteor. Res., 34, 460–481, doi: https://doi.org/10.1007/s13351-020-9829-8.
Zhao, T. B., and A. G. Dai, 2015: The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario. J. Climate, 28, 4490–4512, doi: https://doi.org/10.1175/JCLI-D-14-00363.1.
Zhao, T. B., and A. G. Dai, 2017: Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes. Climatic Change, 144, 535–548, doi: https://doi.org/10.1007/s10584-016-1742-x.
Zhao, T. B., and A. G. Dai, 2022: CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. J. Climate, 35, 897–921, doi: https://doi.org/10.1175/JCLI-D-21-0442.1.
Zhao, T. B., J. H. Wang, and A. G. Dai, 2015: Evaluation of atmospheric precipitable water from reanalysis products using homogenized radiosonde observations over China. J. Geophys. Res. Atmos., 120, 10,703–10,727, doi: https://doi.org/10.1002/2015JD023906.
Acknowledgments
We acknowledge several anonymous reviewers who provided comments and suggestions that greatly improved the quality of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Basic Research Program of China (2020YFA0608904) and National Natural Science Foundation of China (42275185, 41975115, and 41675094).
Rights and permissions
About this article
Cite this article
Chen, Q., Zhao, T., Hua, L. et al. Future Drought Changes in China Projected by the CMIP6 Models: Contributions from Key Factors. J Meteorol Res 37, 454–468 (2023). https://doi.org/10.1007/s13351-023-2169-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-023-2169-8