Abstract
The newly developed nonhydrostatic (NH) global spectral dynamical core is evaluated by using three-dimensional (3D) benchmark tests with/without moisture. This new dynamical core differs from the original Aladin-NH like one in the combined use of a dry-mass vertical coordinate and a new temperature variable, and thus, it inherently conserves the dry air mass and includes the mass sink effect associated with precipitation flux. Some 3D dry benchmark tests are first conducted, including steady state, dry baroclinic waves, mountain waves in non-sheared and sheared background flows, and a dry Held–Suarez test. The results from these test cases demonstrate that the present dynamical core is accurate and robust in applications on the sphere, especially for addressing the nonhydrostatic effects. Then, three additional moist test cases are conducted to further explore the improvement of the new dynamical core. Importantly, in contrast to the original Aladin-NH like one, the new dynamical core prefers to obtain simulated tropical cyclone with lower pressure, stronger wind speeds, and faster northward movement, which is much closer to the results from the Model for Prediction Across Scales (MPAS), and it also enhances the updrafts and provides enhanced precipitation rate in the tropics, which partially compensates the inefficient vertical transport due to the absence of the deep convection parameterization in the moist Held–Suarez test, thus demonstrating its potential value for full-physics global NH numerical weather prediction application.
This is a preview of subscription content, access via your institution.
References
Bénard, P., and J. Mašek, 2013: Scientific Documentation for ALADIN-NH Dynamical Kernel (Version 3.1.0). CHMI, Météo, France, 98 pp.
Bénard, P., J. Vivoda, J. Mašek, et al., 2010: Dynamical kernel of the Aladin-NH spectral limited-area model: Revised formulation and sensitivity experiments. Quart. J. Roy. Meteor. Soc., 136, 155–169, doi: https://doi.org/10.1002/qj.522.
Berrisford, P., P. Kållberg, S. Kobayashi, et al., 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 1381–1399, doi: https://doi.org/10.1002/qj.864.
Bubnová, R., G. Hello, P. Bénard, et al., 1995: Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Wea. Rev., 123, 515–535, doi: https://doi.org/10.1175/1520-0493(1995)123<0515:IOTFEE>2.0.CO;2.
Ding, F., and R. T. Pierrehumbert, 2016: Convection in condensible-rich atmospheres. Astrophys. J., 822, 24, doi: https://doi.org/10.3847/0004-637X/822/1/24.
ECMWF, 2016: IFS documentation CY43r1—part III: Dynamics and numerical procedures. IFS Documentation CY43R1, ECMWF, Ed., ECMWF, Reading, doi: https://doi.org/10.21957/m1u2yxwrl.
Held, I. M., and M. J. Suarez, 1994: A proposal for the intercom-parison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825–1830, doi: https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.
Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 2943–2975, doi: https://doi.org/10.1256/qj.06.12.
Keller, T. L., 1994: Implications of the hydrostatic assumption on atmospheric gravity waves. J. Atmos. Sci., 51, 1915–1929, doi: https://doi.org/10.1175/1520-0469(1994)051<1915:IOTHAO>2.0.CO;2.
Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 3987–4004, doi: https://doi.org/10.1175/2008MWR2596.1.
Klemp, J. B., W. C. Skamarock, and O. Fuhrer, 2003: Numerical consistency of metric terms in terrain-following coordinates. Mon. Wea. Rev., 131, 1229–1239, doi: https://doi.org/10.1175/1520-0493(2003)131<1229:NCOMTI>2.0.CO;2.
Klemp, J. B., W. C. Skamarock, and S.-H. Park, 2015: Idealized global nonhydrostatic atmospheric test cases on a reduced-radius sphere. J. Adv. Model. Earth Syst., 7, 1155–1177, doi: https://doi.org/10.1002/2015MS000435.
Lackmann, G. M., and R. M. Yablonsky, 2004: The importance of the precipitation mass sink in tropical cyclones and other heavily precipitating systems. J. Atmos. Sci., 61, 1674–1692, doi: https://doi.org/10.1175/1520-0469(2004)061<1674:TIOTPM>2.0.CO;2.
Li, C., and X. Chen, 2019: Simulating nonhydrostatic atmospheres on planets (SNAP): Formulation, validation, and application to the Jovian atmosphere. Astrophys. J. Suppl. Ser., 240, 37, doi: https://doi.org/10.3847/1538-4365/aafdaa.
Li, S. Y., J. Peng, W. M. Zhang, et al., 2023: Effects of a dry-mass conserving dynamical core on the simulation of tropical cyclones. Adv. Atmos. Sci., 40, 464–482, doi: https://doi.org/10.1007/s00376-022-2085-3.
Malardel, S., M. Diamantakis, A. Agusti-Panareda, et al., 2019: Dry Mass Versus Total Mass Conservation in the IFS. Technical Memorandum, 849, European Centre for Medium-Range Weather Forecasts, Reading, UK, 21 pp.
Neale, R. B., A. Gettelman, S. Park, et al., 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Technical Note NCAR/TN-486+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, 283pp.
Ooyama, K. V., 2001: A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized micro-physics. J. Atmos. Sci., 58, 2073–2102, doi: https://doi.org/10.1175/1520-0469(2001)058<2073:ADATFF>2.0.CO;2.
Peng, J., J. P. Wu, W. M. Zhang, et al., 2019: A modified nonhyd-rostatic moist global spectral dynamical core using a dry-mass vertical coordinate. Quart. J. Roy. Meteor. Soc., 145, 2477–2490, doi: https://doi.org/10.1002/qj.3574.
Reed, K. A., and C. Jablonowski, 2011: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs. Mon. Wea. Rev., 139, 689–710, doi: https://doi.org/10.1175/2010MWR3488.1.
Reed, K. A., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001, doi: https://doi.org/10.1029/2011MS000099.
Schär, C., D. Leuenberger, O. Fuhrer, et al., 2002: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 2459–2480, doi: https://doi.org/10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2.
Skamarock, W. C., J. B. Klemp, M. G. Duda, et al., 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090–3105, doi: https://doi.org/10.1175/MWR-D-11-00215.1.
Skamarock, W., M. Duda, and S.-H. Park, 2016: MPAS-Atmo-sphere v4.0 with DCMIP 2016 Test Cases. Available online at https://zenodo.org/record/583316#.ZC-LdvmGNIT. Accessed on 6 May 2023.
Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99–164, doi: https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
Thatcher, D. R., and C. Jablonowski, 2016: A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores. Geosci. Model Dev., 9, 1263–1292, doi: https://doi.org/10.5194/gmd-9-1263-2016.
Tygert, M., 2010: Fast algorithms for spherical harmonic expansions, III. J. Comput. Phys., 229, 6181–6192, doi: https://doi.org/10.1016/j.jcp.2010.05.004.
Ullrich, P. A., C. Jablonowski, J. Kent, et al., 2012: Dynamical Core Model Intercomparison Project (DCMIP) Test Case Document. Available online at http://www-personal.umich. edu/~cjablono/DCMIP-2012_TestCaseDocument_v1.7.pdf. Accessed on 6 May 2023.
Ullrich, P. A., T. Melvin, C. Jablonowski, et al., 2014: A proposed baroclinic wave test case for deep- and shallow-atmosphere dynamical cores. Quart. J. Roy. Meteor. Soc., 140, 1590–1602, doi: https://doi.org/10.1002/qj.2241.
Ullrich, P. A., C. Jablonowski, K. A. Reed, et al., 2016: Dynamical Core Model Intercomparison Project Test Case Document 2016. Available online at https://github.com/ClimateGlobal-Change/DCMIP2016. Accessed on 6 May 2023.
Wedi, N. P., 1999: The Numerical Coupling of the Physical Para-metrizations to the Dynamical Equations in a Forecast Model. Technical Memorandum, 274, European Centre for Medium-Range Weather Forecasts, Reading, UK, 21 pp.
Wedi, N. P., and P. K. Smolarkiewicz, 2009: A framework for testing global nonhydrostatic models. Quart. J. Roy. Meteor. Soc., 135, 469–484, doi: https://doi.org/10.1002/qj.377.
Wedi, N. P., K. Yessad, and A. Untch, 2009: The Non-Hydrostatic Global IFS/ARPEGE Model: Model Formulation and Testing. Technical Memorandum, 594, European Centre for Medium-Range Weather Forecasts, Reading, UK, 36 pp.
Wong, M., W. C. Skamarock, P. H. Lauritzen, et al., 2013: A cell-integrated semi-Lagrangian semi-implicit shallow-water model (CSLAM-SW) with conservative and consistent transport. Mon. Wea. Rev., 141, 2545–2560, doi: https://doi.org/10.1175/MWR-D-12-00275.1.
Wurtele, M. G., R. D. Sharman, and T. L. Keller, 1987: Analysis and simulations of a troposphere-stratosphere gravity wave model. Part I. J. Atmos. Sci., 44, 3269–3281, doi: https://doi.org/10.1175/1520-0469(1987)044<3269:AASOAT>2.0.CO;2.
Yang, X. R., W. M. Zhang, J. Peng, et al., 2023: Performance of a global spectral model with dry air-mass and total air-mass conserving dynamical cores: A case study of the July 2021 Henan extreme rainfall event. J. Meteor. Res., 37, 20–44, doi: https://doi.org/10.1007/s13351-023-2040-y.
Yin, F. K., G. L. Wu, J. P. Wu, et al., 2018: Performance evaluation of the fast spherical harmonic transform algorithm in the Yin-He global spectral model. Mon. Wea. Rev., 146, 3163–3182, doi: https://doi.org/10.1175/MWR-D-18-0151.1.
Yin, F. K., J. P. Wu, J. Q. Song, et al., 2019: A high accurate and stable Legendre transform based on block partitioning and butterfly algorithm for NWP. Mathematics, 7, 966, doi: https://doi.org/10.3390/math7100966.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation of China (42275062, 41875121, and 41975066).
Rights and permissions
About this article
Cite this article
Peng, J., Wu, J., Yang, X. et al. Verification of a Modified Nonhydrostatic Global Spectral Dynamical Core Based on the Dry-Mass Vertical Coordinate: Three-Dimensional Idealized Test Cases. J Meteorol Res 37, 286–306 (2023). https://doi.org/10.1007/s13351-023-2158-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-023-2158-y