Abstract
In North China, the return flow (RF) refers to the airflow at the rear of an inshore high pressure, bringing southerly wind to the Beijing–Tianjin–Hebei (BTH) region when the high pressure pushes deeper from coast into the mainland. Many studies have pointed out the significant contribution of southerly anomalies to the transport and accumulation of pollutants in the BTH region. However, the relationship between RF and heavy pollution episodes (HPEs) in the BTH region requires more in-depth analysis, and this study will focus on this topic. By objectively identifying RFs and HPEs based on the ERA5 reanalysis data and observed hourly PM2.5 concentration data during 9 winters of 2012–2020, it is found that almost two-thirds of the HPEs in the BTH region coincide with the occurrence of RFs. The northward transport of warm and humid air is stronger in the HPEs under RF conditions, whereas the sinking motion and the decrease in boundary layer height dominate the HPEs without any RF. We then classify the RFs into north and south types by a demarcation line of 32°N. Both types of RFs are featured with a zonal circulation pattern, stable atmosphere, and southerly airflow favoring the development of HPEs, but the south type RFs bring warmer and wetter air masses to the BTH region, forming a more stable and thicker inversion layer and causing more severe HPEs. With occurrences of the RF, low-level winds are observed to accelerate, and the ageostrophic wind components contribute mainly to this acceleration. During the presence of RFs, the kinetic energy generation at the high level decreases, and the weakened downward transport results in weak low-level northerly winds, weak turbulence, and a shallow boundary layer, thus hindering the diffusion of atmospheric pollutants in the BTH region.
This is a preview of subscription content,
to check access.References
An, X. D., L. F. Sheng, Q. Liu, et al., 2020: The combined effect of two westerly jet waveguides on heavy haze in the North China Plain in November and December 2015. Atmos. Chem. Phys., 20, 4667–4680, doi: https://doi.org/10.5194/acp-20-4667-2020.
Cai, W. J., K. Li, H. Liao, et al., 2017: Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Climate Change, 7, 257–262, doi: https://doi.org/10.1038/ncli-mate3249.
Cai, Z. Y., S. Q. Han, J. Wang, et al., 2017: Analysis of synoptic characteristics of heavy pollution in Tianjin based on weather background. Acta Sci. Circums., 37, 3906–3917, doi: https://doi.org/10.13671/j.hjkxxb.2017.0136. (in Chinese)
Chen, H., Y. Lin, Q. Su, et al., 2017: Spatial variation of multiple air pollutants and their potential contributions to all-cause, respiratory, and cardiovascular mortality across China in 2015–2016. Atmos. Environ., 168, 23–35, doi: https://doi.org/10.1016/j.at-mosenv.2017.09.006.
Chen, H. P., and H. J. Wang, 2015: Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J. Geophys. Res. Atmos., 120, 5895–5909, doi: https://doi.org/10.1002/2015jd023225.
Crisp, C. A., and J. M. Lewis, 1992: Return flow in the gulf of Mexico. Part I: A classificatory approach with a global historical perspective. J. Appl. Meteor., 31, 868–881, doi: https://doi.org/10.1175/1520-0450(1992)031<0868:RFITGO>2.0.CO;2.
Ding, Y. H., and Y. J. Liu, 2014: Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Sci. China Earth Sci., 57, 36–46, doi: https://doi.org/10.1007/s11430-013-4792-1.
Guo, H., Z. Y. Fu, Y. J. Xiong, et al., 2007: Analysis of the weather conditions for a case of heavy pollution in Beijing. Meteor. Mon., 33, 32–36. (in Chinese)
Han, L., Z. B. Sun, T. Y. Gong, et al., 2020a: Assessment of the short-term mortality effect of the national action plan on air pollution in Beijing, China. Environ. Res. Lett., 15, 034052, doi: https://doi.org/10.1088/1748-9326/ab6f13.
Han, L., Z. B. Sun, J. He, et al., 2020b: Seasonal variation in health impacts associated with visibility in Beijing, China. Sci. Total Environ., 730, 139149, doi: https://doi.org/10.1016/j.scitotenv.2020.139149.
He, L. F., T. Chen, and W. X. Mao, 2006: The formation of a sustained heavy fog event in North China plain. J. Trop. Meteor., 22, 340–350. (in Chinese)
Henry, W. K., and A. H. Thompson, 1978: On “return flow” in winter over the East China Sea. Mon. Wea. Rev., 106, 947–953, doi: https://doi.org/10.1175/1520-0493(1978)106<0947:OFIWOT>2.0.CO;2.
Hersbach, H., B. Bell, P. Berrisford, et al., 2018a: ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), doi: https://doi.org/10.24381/cds.adbb2d47.
Hersbach, H., B. Bell, P. Berrisford, et al., 2018b: ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), doi: https://doi.org/10.24381/cds.bd0915c6.
Hu, Y. L., S. G. Wang, G. C. Ning, et al., 2018: A quantitative assessment of the air pollution purification effect of a super strong cold-air outbreak in January 2016 in China. Air Qual. Atmos. Health, 11, 907–923, doi: https://doi.org/10.1007/s11869-018-0592-2.
Kim, H. J., S. W. Son, W. Moon, et al., 2021: Subseasonal relationship between Arctic and Eurasian surface air temperature. Sci. Rep., 11, 4081, doi: https://doi.org/10.1038/s41598-021-83486-5.
Lewis, J. M., and C. A. Crisp, 1992: Return flow in the gulf of Mexico. Part II: Variability in return-flow thermodynamics inferred from trajectories over the Gulf. J. Appl. Meteor., 31, 882–898, doi: https://doi.org/10.1175/1520-0450(1992)031<0882:RFITGO>2.0.CO;2.
Lewis, J. M., C. M. Hayden, R. T. Merrill, et al., 1989: GUFMEX: A study of return flow in the gulf of Mexico. Bull. Amer. Meteor. Soc., 70, 24–29, doi: https://doi.org/10.1175/1520-0477(1989)070<0024:GASORF>2.0.CO;2.
Li, J., S. X. Zhao, and J. H. Sun, 2017: Analysis of a record heavy snowfall event in North China. Climatic Environ. Res., 22, 683–698. (in Chinese)
Li, M. G., L. L. Wang, J. D. Liu, et al., 2020: Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environ. Int., 134, 107283, doi: https://doi.org/10.1016/j.envint.2019.105283.
Liu, L. L., and L. L. Wang, 2011: Characteristics of winter heavy pollution episodes and meteorological causes and structures of boundary layer in Tianjin. Climatic Environ. Res., 20, 129–140. (in Chinese)
Liu, X. E., and X. L. Guo, 2012: Role of downward momentum transport in the formation of severe surface winds. Atmos. Oceanic Sci. Lett., 5, 379–383, doi: https://doi.org/10.1080/16742834.2012.11447020.
Lu, C. S., S. J. Niu, J. Yang, et al., 2010: Jump features and causes of macro and microphysical structures of a winter fog in Nanjing. Chinese J. Atmos. Sci., 34, 681–690, doi: https://doi.org/10.3878/j.issn.1006-9895.2010.04.02. (in Chinese)
Lu, W. T., Y. H. Ding, and S. G. Wen, 1988: A study on the ageostrophic wind during winter monsoon over East Asia. J. Acad. Meteor. Sci., 3, 138–170. (in Chinese)
Ma, X. H., X. N. Liao, Y. X. Tang, et al., 2017: Weather pattern and case analysis of air heavy pollution days in Beijing. J. Meteor. Environ., 33, 73–60. (in Chinese)
Mei, M., Y. H. Ding, Z. Y. Wang, et al., 2021a: Effects of the East Asian subtropical westerly jet on winter persistent heavy pollution in the Beijing–Tianjin–Hebei region. Int. J. Climatol., 42, 2970–2964, doi: https://doi.org/10.1002/joc.7400.
Mei, M., D. H. Xu, R. Zhu, et al., 2021b: Contributions of emission reduction measures and meteorological factors to the changes in PM2.5 concentration over the mainland of China from 2013 to 2019. Acta Sci. Circums., 41, 2519–2529, doi: https://doi.org/10.13671/j.hjkxxb.2020.0501. (in Chinese)
Miao, Y. C., and S. H. Liu, 2019: Linkages between aerosol pollution and planetary boundary layer structure in China. Sci. Total Environ., 650, 288–296, doi: https://doi.org/10.1016/j.scitotenv.2018.09.032.
Miao, Y. C., J. P. Guo, S. H. Liu, et al., 2017: Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution. Atmos. Chem. Phys., 17, 3097–3110, doi: https://doi.org/10.5194/acp-17-3097-2017.
Qian, W. H., and J. Huang, 2019: Applying the anomaly-based weather analysis on Beijing severe haze episodes. Sci. Total Environ., 647, 878–887, doi: https://doi.org/10.1016/j.scitotenv.2018.07.408.
Qian, W. M., Y. L. Luo, Y. Cao, et al., 2022: Analysis of a back-flow heavy snowfall event in central North China using multi-source data. Acta Meteor. Sinica, 80, 732–747. (in Chinese)
Su, F. Q., Z. H. Ren, Q. X. Gao, et al., 2004: Convergence system of air contamination in boundary layer above Beijing and North China: Transportation convergence in boundary layer. Res. Environ. Sci., 17, 21–25, 33, doi: https://doi.org/10.13198/j.res.2004.01.23.sufq.004. (in Chinese)
Sui, C. J., A. Y. Karpechko, T. Vihma, et al., 2022: Influence of the Ural high on air temperatures over eastern Europe and Northern China during extended winter. J. Climate, 35, 1309–1325, doi: https://doi.org/10.1175/jcli-d-21-0523.1.
Sun, Z. B., X. L. Zhang, X. J. Zhao, et al., 2018: Oscillation of surface PM2.5 concentration resulting from an alternation of easterly and southerly winds in Beijing: Mechanisms and implications. J. Meteor. Res., 32, 288–301, doi: https://doi.org/10.1007/s13351-018-7064-3.
Sun, Z. B., X. J. Zhao, Z. M. Li, et al., 2021: Boundary layer structure characteristics under objective classification of persistent pollution weather types in the Beijing area. Atmos. Chem. Phys., 21, 8863–8882, doi: https://doi.org/10.5194/acp-21-8863-2021.
Sun, Z. B., L. Han, A. J. Ding, et al., 2022: The health impacts of aerosol-planetary boundary layer interactions on respiratory and circulatory mortality. Atmos. Environ., 276, 119070, doi: https://doi.org/10.1016/j.atmosenv.2022.119050.
Tian, X. X., X. H. Song, X. Cheng, et al., 2011: Diagnostic analysis of a heavy snow of return-flow event in North China. J Meteor. Environ., 27, 37–39, doi: https://doi.org/10.3969/j.issn.1673-503X.2011.01.007. (in Chinese)
Wang, G. H., R. Y. Zhang, M. E. Gomez, et al., 2016: Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci., 113, 13,630–13,635, doi: https://doi.org/10.1073/pnas.1616540113.
Wang, H. J., H. P. Chen, and J. P. Liu, 2015: Arctic sea ice decline intensified haze pollution in eastern China. Atmos. Oceanic Sci. Lett., 8, 1–9.
Wang, J., Y. J. Liu, Y. H. Ding, et al., 2020: Impacts of climate anomalies on the interannual and interdecadal variability of autumn and winter haze in North China: A review. Int. J. Climatol., 40, 4309–4325, doi: https://doi.org/10.1002/joc.6471.
Wang, Y., L. L. Wang, G. N. Zhao, et al., 2014: Analysis of different-scales circulation patterns and boundary layer structure of PM2.5 heavy pollutions in Beijing during winter. Climatic Environ. Res., 19, 173–184. (in Chinese)
Wu, B. G., H. S. Zhang, J. Wang, et al., 2009: Characteristics of the inversion and the water vapor transport during a duration fog event. Plateau Meteor., 28, 258–267. (in Chinese)
Wu, G. X., Z. Q. Li, C. B. Fu, et al., 2016: Advances in studying interactions between aerosols and monsoon in China. Sci. China Earth Sci., 59, 1–16, doi: https://doi.org/10.1007/s11430-015-5198-z.
Wu, P., Y. H. Ding, Y. J. Liu, et al., 2016: Influence of the East Asian winter monsoon and atmospheric humidity on the wintertime haze frequency over central-eastern China. Acta Meteor. Sinica, 74, 352–366. (in Chinese)
Wu, P., Y. H. Ding, and Y. J. Liu, 2017: Atmospheric circulation and dynamic mechanism for persistent haze events in the Beijing–Tianjin–Hebei region. Adv. Atmos. Sci., 34, 429–440, doi: https://doi.org/10.1007/s00376-016-6158-z.
Xie, Y. B., J. Chen, and W. Li, 2014: An assessment of PM2.5 related health risks and impaired values of Beijing residents in a consecutive high-level exposure during heavy haze days. Environ. Sci., 35, 1–8, doi: https://doi.org/10.13227/j.hjkx.2014.01.057. (in Chinese)
Yin, Z. C., and H. J. Wang, 2016: The relationship between the subtropical Western Pacific SST and haze over north–central North China Plain. Int. J. Climatol., 36, 3479–3491, doi: https://doi.org/10.1002/joc.4570.
Yin, Z. C., and H. J. Wang, 2017: Role of atmospheric circulations in haze pollution in December 2016. Atmos. Chem. Phys., 17, 11,673–11,681, doi: https://doi.org/10.5194/acp-17-11673-2017.
Yin, Z. C., H. J. Wang, and H. P. Chen, 2017: Understanding severe winter haze events in the North China Plain in 2014: Roles of climate anomalies. Atmos. Chem. Phys., 17, 1641–1651, doi: https://doi.org/10.5194/acp-17-1641-2017.
You, Y. C., X. G. Cheng, T. L. Zhao, et al., 2018: Variations of haze pollution in China modulated by thermal forcing of the western Pacific warm pool. Atmosphere, 9, 314, doi: https://doi.org/10.3390/atmos9080314.
Yuan, Y., N. F. Zhou, and C. Y. Li, 2017: Correlation between haze in North China and super El Niño events. Chinese J. Geophys., 60, 11–21. (in Chinese)
Zhai, L., Z. B. Sun, Z. M. Li, et al., 2019: Dynamic effects of topography on dust particles in the Beijing region of China. Atmos. Environ., 213, 413–423, doi: https://doi.org/10.1016/j.atmosenv.2019.06.029.
Zhang, Q., and G. N. Geng, 2019: Impact of clean air action on PM2.5 pollution in China. Sci. China Earth Sci., 62, 1845–1846, doi: https://doi.org/10.1007/s11430-019-9531-4.
Zhang, Q., Y. X. Zheng, D. Tong, et al., 2019: Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA, 116, 24,463–24,469, doi: https://doi.org/10.1073/pnas.1907956116.
Zhang, R. H., Q. Li, and R. N. Zhang, 2014: Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci., 57, 26–35, doi: https://doi.org/10.1007/s11430-013-4774-3.
Zhang, W. H., S. F. Hai, Y. H. Zhao, et al., 2021: Numerical modeling of regional transport of PM2.5 during a severe pollution event in the Beijing–Tianjin–Hebei region in November 2015. Atmos. Environ., 254, 118393, doi: https://doi.org/10.1016/j.atmosenv.2021.118393.
Zhang, Z. Y., D. Y. Gong, R. Mao, et al., 2019: Possible influence of the Antarctic oscillation on haze pollution in North China. J. Geophys. Res. Atmos., 124, 1307–1321, doi: https://doi.org/10.1029/2018jd029239.
Zhao, S. X., J. H. Sun, H. Chen, et al., 2002: A study on snowfall in Beijing on 7 December 2001. Climatic Environ. Res., 7, 7–21. (in Chinese)
Zhong, W. G., Z. C. Yin, and H. J. Wang, 2019: The relationship between anticyclonic anomalies in northeastern Asia and severe haze in the Beijing–Tianjin–Hebei region. Atmos. Chem. Phys., 19, 5941–5957, doi: https://doi.org/10.5194/acp-19-5941-2019.
Zou, Y. F., Y. H. Wang, Y. Z. Zhang, et al., 2017: Arctic sea ice, Eurasia snow, and extreme winter haze in China. Sci. Adv., 3, e1602751, doi: https://doi.org/10.1126/sciadv.1602751.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation of China (41790471).
Rights and permissions
About this article
Cite this article
Mei, M., Ding, Y. & Wang, Z. Impact of the Return Flow on Heavy Pollution in Winter over the Beijing–Tianjin–Hebei Region. J Meteorol Res 37, 370–386 (2023). https://doi.org/10.1007/s13351-023-2141-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-023-2141-7