Ben Alaya, M. A., F. Zwiers, and X. Zhang, 2020: An evaluation of block-maximum-based estimation of very long return period precipitation extremes with a large ensemble climate simulation. J. Climate, 33, 6957–6970, doi: https://doi.org/10.1175/JCLI-D-19-0011.1.
Article
Google Scholar
Chen, H. P., J. Q. Sun, W. Q. Lin, et al., 2020: Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull., 65, 1415–1418, doi: https://doi.org/10.1016/j.scib.2020.05.015.
Article
Google Scholar
Du, H. Y., C. Zhou, H. Q. Tang, et al., 2021: Simulation and estimation of future precipitation changes in arid regions: a case study of Xinjiang, Northwest China. Climatic Change, 167, 43, doi: https://doi.org/10.1007/s10584-021-03192-z.
Article
Google Scholar
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, C. B. Field, V. Barros, T. F. Stocker, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 582 pp.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, et al., Eds., in press. Available online at https://www.ipcc.ch/sr15/. Accessed on 10 March 2022.
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte, P. Zhai, A. Pirani, et al., Eds., Cambridge University Press, in press. Available online at https://www.ip-cc.ch/report/sixth-assessment-report-working-group-i/. Accessed on 10 March 2022.
Kendall, M. G., 1975: Rank Correlation Methods. 4th ed., Charles Griffin, London, 202 pp.
Google Scholar
Kharin, V. V., F. W. Zwiers, X. B. Zhang, et al., 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 1419–1444, doi: https://doi.org/10.1175/JCLI4066.1.
Article
Google Scholar
Kharin, V. V., F. W. Zwiers, X. Zhang, et al., 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345–357, doi: https://doi.org/10.1077/s10584-013-0705-8.
Article
Google Scholar
Kharin, V. V., G. M. Flato, X. Zhang, et al., 2018: Risks from climate extremes change differently from 1.5°C to 2.0°C depending on rarity. Earth’s Future, 6, 704–715, doi: https://doi.org/10.1002/2018EF000813.
Article
Google Scholar
La, M. K., Y. Zhou, H. C. Zhu, et al., 2019: On the precipitation changes over Xinjiang in summers from 2006 to 2035 through the dynamical downscaling of CMIP5 model results. J. Meteor. Sci., 39, 413–120. (in Chinese)
Google Scholar
Li, C., F. Zwiers, X. B. Zhang, et al., 2021: Changes in annual extremes of daily temperature and precipitation in CMIP6 models. J. Climate, 34, 3441–3460, doi: https://doi.org/10.1175/JCLI-D-19-1013.1.
Article
Google Scholar
Li, H. B., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos., 115, D10101, doi: https://doi.org/10.1029/2009JD012882.
Article
Google Scholar
Li, S.-Y., L.-J. Miao, Z.-H. Jiang, et al., 2020: Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099. Adv. Climate Change Res., 11, 210–217, doi: https://doi.org/10.1016/j.accre.2020.09.003.
Article
Google Scholar
Lu, S., Z. Y. Hu, H. P. Yu, et al., 2021: Changes of extreme precipitation and its associated mechanisms in Northwest China. Adv. Atmos. Sci., 38, 1665–1681, doi: https://doi.org/10.1007/s00376-021-0409-3.
Article
Google Scholar
O’Neill, B. C., C. Tebaldi, D. P. van Vuuren, et al., 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 3461–3482, doi: https://doi.org/10.5194/gmd-9-3461-2016.
Article
Google Scholar
Pan, X. D., L. Zhang, and C. L. Huang, 2020: Future climate projection in Northwest China with RegCM4.6. Earth Space Sci., 7, e2019EA000819, doi: https://doi.org/10.1029/2019EA000819.
Google Scholar
Qin, J. C., B. D. Su, H. Tao, et al., 2021: Projection of temperature and precipitation under SSPs-RCPs scenarios over North-west China. Front. Earth Sci., 15, 23–37, doi: https://doi.org/10.1007/s11707-020-0847-8.
Article
Google Scholar
Riahi, K., D. P. van Vuuren, E. Kriegler, et al., 2017: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153–168, doi: https://doi.org/10.1016/j.gloenvcha.2016.05.009.
Article
Google Scholar
Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Statist. Assoc., 63, 1379–1389, doi: https://doi.org/10.1080/01621459.1968.10480934.
Article
Google Scholar
Shi, Y. F., Y. P. Shen, D. L. Li, et al., 2003: Discussion on the present climate change from warm-dry to warm-wet in North-west China. Quat. Sci., 23, 152–164, doi: https://doi.org/10.3321/j.issn:1001-7410.2003.02.005. (in Chinese)
Google Scholar
Shi, Y. F., Y. P. Shen, E. S. Kang, et al., 2007: Recent and future climate change in Northwest China. Climatic Change, 80, 379–393, doi: https://doi.org/10.1007/s10584-006-9121-7.
Article
Google Scholar
Wang, Q., P.-M. Zhai, and D.-H. Qin, 2020: New perspectives on ‘warming—wetting’ trend in Xinjiang, China. Adv. Climate Change Res., 11, 252–260, doi: https://doi.org/10.1016/j.accre.2020.09.004.
Article
Google Scholar
Wang, Z. Q., X. J. Gao, Y. Tong, et al., 2021: Future climate change projection over Xinjiang based on an ensemble of regional climate model simulations. Chinese J. Atmos. Sci., 45, 407–423. (in Chinese)
Google Scholar
Watanabe, S., K. Takahashi, Y. Hijioka, et al., 2016: Report of the IPCC workshop on regional climate projections and their use in impacts and risk analysis studies. J. Japan Soc. Hydrol. Water Resour., 29, 79–84, doi: https://doi.org/10.3178/jjshwr.29.79.
Article
Google Scholar
Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J. Geophys., 56, 1102–1111. (in Chinese)
Google Scholar
Wu, P., Y. H. Ding, Y. J. Liu, et al., 2019: The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China. Int. J. Climatol., 39, 5241–5255, doi: https://doi.org/10.1002/joc.6136.
Article
Google Scholar
Wu, Z. T., H. J. Zhang, C. M. Krause, et al., 2010: Climate change and human activities: a case study in Xinjiang, China. Climatic Change, 99, 457–472, doi: https://doi.org/10.1007/s10584-009-9760-6.
Article
Google Scholar
Xu, Y., Y. H. Ding, Z. C. Zhao, et al., 2003: A scenario of seasonal climate change of the 21st century in Northwest China. Climatic Environ. Res., 8, 19–25, doi: https://doi.org/10.3969/j.issn.1006-9585.2003.01.003. (in Chinese)
Google Scholar
Xu, Y., X. J. Gao, F. Giorgi, et al., 2018: Projected changes in temperature and precipitation extremes over China as measured by 50-yr return values and periods based on a CMIP5 ensemble. Adv. Atmos. Sci., 35, 376–388, doi: https://doi.org/10.1007/s00376-017-6269-1.
Article
Google Scholar
Yang, X., E. F. Wood, J. Sheffield, et al., 2018: Bias correction of historical and future simulations of precipitation and temperature for China from CMIP5 models. J. Hydrometeor., 19, 609–623, doi: https://doi.org/10.1175/JHM-D-17-0180.1.
Article
Google Scholar
Yu, E. T., J. Q. Sun, G. H. Lv, et al., 2015: High-resolution projection of future climate change in the northwestern arid regions of China. Arid Land Geography, 38, 429–437. (in Chinese)
Google Scholar
Zhai, P. M., F. M. Ren, and Q. Zhang, 1999: Detection of trends in China’s precipitation extremes. Acta Meteor. Sinica, 57, 208–216. (in Chinese)
Google Scholar
Zhang, Q., J. H. Yang, W. Wang, et al., 2021: Climatic warming and humidification in the arid region of Northwest China: Multi-scale characteristics and impacts on ecological vegetation. J. Meteor. Res., 35, 113–127, doi: https://doi.org/10.1007/s13351-021-0105-3.
Article
Google Scholar
Zhao, W. Y., Y. N. Chen, J. L. Li, et al., 2010: Periodicity of plant yield and its response to precipitation in the steppe desert of the Tianshan Mountains region. J. Arid Environ., 74, 445–449, doi: https://doi.org/10.1016/j.jaridenv.2009.09.022.
Article
Google Scholar
Zhou, T. J., and X. L. Chen, 2015: Uncertainty in the 2°C warming threshold related to climate sensitivity and climate feedback. J. Meteor. Res., 29, 884–895, doi: https://doi.org/10.1007/s13351-015-5036-4.
Article
Google Scholar
Zhu, B. L., L. Q. Xue, G. H. Wei, et al., 2019: CMIP5 projected changes in temperature and precipitation in arid and humid basins. Theor. Appl. Climatol., 136, 1133–1144, doi: https://doi.org/10.1007/s00704-018-2542-1.
Article
Google Scholar
Zhu, H. H., Z. H. Jiang, J. Li, et al., 2020: Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv. Atmos. Sci., 37, 1119–1132, doi: https://doi.org/10.1007/s00376-020-9289-1.
Article
Google Scholar