ABARES, 2001: Catchment Scale Land Use of Australia—Update December 2020. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, Australia. Available online at https://doi.org/10.25814/aqjw-rq15. Accessed on 5 January 2022.
Andrys, J., J. Kala, and T. J. Lyons, 2017: Regional climate projections of mean and extreme climate for the southwest of Western Australia (1970–1999 compared to 2030–2059). Climate Dyn., 48, 1723–1747, doi: https://doi.org/10.1007/s00382-016-3169-5.
Article
Google Scholar
Assiri, M. E., 2017: Assessing MODIS land surface temperature (LST) over Jeddah. Pol. J. Environ. Stud., 26, 1461–1470, doi: https://doi.org/10.15244/pjoes/68960.
Article
Google Scholar
Australian Bureau of Statistics, 2020: Value of Agricultural Commodities Produced, Australia, Canberra, Australia: Australian Bureau of Statistics. Available online at https://www.abs.gov.au/statistics/industry/agriculture/value-agricultural-commodities-produced-australia/2018-19. Accessed on 5 January 2022.
Bureau of Meteorology, 2021a: Climate Data Online. Available online at http://www.bom.gov.au/climate/data/. Accessed on 5 January 2022.
Bureau of Meteorology, 2021b: Maps of Recent, Past and Average Conditions. Available online at http://www.bom.gov.au/climate/maps/. Accessed on 5 January 2022.
Campbell, T., 2021: Monthly Department of Primary Industries and Regional Development (DPIRD) Weather Station Data for the South West Agricultural Region (SWAR). Curtin University, Perth, Western Australia. Available online at https://doi.org/10.25917/fry7-nx79. Accessed on 5 January 2022.
Google Scholar
Campbell, T. C., K. W. Dixon, K. Dods, et al., 2020: Machine learning regression model for predicting honey harvests. Agriculture, 10, 118, doi: https://doi.org/10.3390/agriculture10040118.
Article
Google Scholar
Canterford, R., 1997: Guidelines for the Siting and Exposure of Meterological Instruments and Observing Facilities. Bureau of Meteorology, Department of the Environment, Sports and Territories, Melbourne, Australia, 92 pp.
Google Scholar
Charles, S. P., R. P. Silberstein, J. Teng, et al., 2010: Climate Analyses for the South-West Western Australia Sustainable Yields Project. A Report to the Australian Government from the CSIRO South-West Western Australia Sustainable Yields Project. CSIRO, Canberra, Australia, 92 pp.
Google Scholar
Chen, T., R. A. M. de Jeu, Y. Y. Liu, et al., 2014: Using satellite based soil moisture to quantify the water driven variability in NDVI: A case study over mainland Australia. Remote Sens. Environ., 140, 330–338, doi: https://doi.org/10.1016/j.rse.2013.08.022.
Article
Google Scholar
Chua, Z.-W., Y. Kuleshov, and A. Watkins, 2020: Evaluation of satellite precipitation estimates over Australia. Remote Sens., 12, 678, doi: https://doi.org/10.3390/rs12040678.
Article
Google Scholar
Dash, P., F.-S. Olesen, and A. J. Prata, 2004: Optimal land surface temperature validation site in Europe for MSG. Proceedings of 2004 EUMETSAT Meteorological Satellite Conference, IMK, Praha, 248–254.
Google Scholar
Data WA, 2018: South West Agricultural Region (DPIRD-008).
Perth, Western Australia: Department of Primary Industries and Regional Development: Available online at https://catalogue.data.wa.gov.au/dataset/south-west-agricultural-region-dpird-008. Accessed on 5 January 2022.
Department of Primary Industries and Regional Development, 2021: Weather. Available online at https://weather.agric.wa.gov.au/. Accessed on 5 January 2022.
European Commission Joint Research, 2021: Land Surface Temperature. Copernicus Global Land Service. Available online at https://land.copernicus.eu/global/products/lst. Accessed on 5 January 2022.
Førland, E. J., P. Allerup, B. Dahlström, et al., 1996: Manual for Operational Correction of Nordic Precipitation Data. Norske Meteorologiske Institutt, Oslo, 66 pp.
Google Scholar
Freitas, S. C., A. Pires, D. Gaspar, et al., 2017: Quality assessment report land surface temperature MTSAT replacement by Himawari. Gio Global Land Component—Lot I “Operation of the Global Land Component”, 31 pp.
Habib, E., A. T. Haile, Y. D. Tian, et al., 2012: Evaluation of the high-resolution CMORPH satellite rainfall product using dense rain gauge observations and radar-based estimates. J. Hydrometeor., 13, 1784–1798, doi: https://doi.org/10.1175/jhm-d-12-017.1.
Article
Google Scholar
Japan Aerospace Exploration Agency, 2021: JAXA Global Rainfall Watch. Available online at https://sharaku.eorc.jaxa.jp/GSMaP/index.htm. Accessed on 5 January 2022.
Jones, D. A., W. Wang, and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233–248, doi: https://doi.org/10.22499/2.5804.003.
Article
Google Scholar
Joyce, R. J., J. E. Janowiak, P. A. Arkin, et al., 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487–503, doi: https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.
Article
Google Scholar
Kheiri, M., S. Soufizadeh, A. Ghaffari, et al., 2017: Association between temperature and precipitation with dryland wheat yield in northwest of Iran. Climatic Change, 141, 703–717, doi: https://doi.org/10.1007/s10584-017-1904-5.
Article
Google Scholar
Kubota, T., S. Shige, H. Hashizume, et al., 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 2259–2275, doi: https://doi.org/10.1109/TGRS.2007.895337.
Article
Google Scholar
Li, R. B., H. Li, L. Sun, et al., 2020: An operational split-window algorithm for retrieving land surface temperature from geostationary satellite data: A case study on Himawari-8 AHI data. Remote Sens., 12, 2613, doi: https://doi.org/10.3390/rs12162613.
Article
Google Scholar
Lin, S. P., N. J. Moore, J. P. Messina, et al., 2012: Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa. Int. J. Appl. Earth Obser. Geoinf., 18, 128–140, doi: https://doi.org/10.1016/j.jag.2012.01.004.
Article
Google Scholar
Lin, X., and K. G. Hubbard, 2004: Sensor and electronic biases/errors in air temperature measurements in common weather station networks. J. Atmos. Ocean. Technol., 21, 1025–1032, doi: https://doi.org/10.1175/1520-0426(2004)021<1025:saeeia>2.0.co;2.
Article
Google Scholar
Lobell, D. B., K. N. Cahill, and C. B. Field, 2007: Historical effects of temperature and precipitation on California crop yields. Climatic Change, 81, 187–203, doi: https://doi.org/10.1007/s10584-006-9141-3.
Article
Google Scholar
Martins, J. P., I. Trigo, S. Ermida, et al., 2018: Scientific Quality Evaluation Land Surface Temperature January-December 2017. International Project Management Association. Copernicus Global Land Service, 89 pp.
Martins, J. P., S. C. E. Freitas, I. Trigo, et al., 2020: Algorithm theoretical basis document: 10-day land surface temperature—LST10 version 2.0. Copernicus Global Land Operations—Lot I “Vegetation and Energy”, Copernicus Global Land Service, 76 pp.
Mendelsohn, R., P. Kurukulasuriya, A. Basist, et al., 2007: Climate analysis with satellite versus weather station data. Climatic Change, 81, 71–83, doi: https://doi.org/10.1007/s10584-006-9139-x.
Article
Google Scholar
Nemchin, A. A., and R. T. Pidgeon, 1997: Evolution of the darling range batholith, yilgarn craton, Western Australia: A SHRIMP zircon study. J. Petrol., 38, 625–649, doi: https://doi.org/10.1093/petroj/38.5.625.
Article
Google Scholar
Ning, S. W., F. Song, P. Udmale, et al., 2017: Error analysis and evaluation of the latest GSMap and IMERG precipitation products over Eastern China. Adv. Meteor., 2017, 1803492, doi: https://doi.org/10.1155/2017/1803492.
Article
Google Scholar
Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger Climate classification. Hydrol. Earth Syst. Sci. Dis., 4, 439–473.
Google Scholar
Phan, T. N., M. Kappas, K. T. Nguyen, et al., 2019: Evaluation of MODIS land surface temperature products for daily air surface temperature estimation in Northwest Vietnam. Int. J. Remote Sens., 40, 5544–5562, doi: https://doi.org/10.1080/01431161.2019.1580789.
Article
Google Scholar
Price, J. C., 1979: Assessment of the urban heat island effect through the use of satellite data. Mon. Wea. Rev., 107, 1554–1557, doi: https://doi.org/10.1175/1520-0493(1979)107<1554:aotuhi>2.0.co;2.
Article
Google Scholar
Schlenker, W., and M. J. Roberts, 2009: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA, 106, 15,594–15,598, doi: https://doi.org/10.1073/pnas.0906865106.
Article
Google Scholar
Sudmeyer, R., A. Edward, V. Fazakerley, et al., 2016: Climate Change: Impacts and Adaptation For Agriculture in Western Australia. Western Australian Agriculture Authority, Perth, Australia.
Google Scholar
Vancutsem, C., P. Ceccato, T. Dinku, et al., 2010: Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ., 114, 449–465, doi: https://doi.org/10.1016/j.rse.2009.10.002.
Article
Google Scholar
Wan, Z. M., 2015: MOD11A1 V006 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid. USGS. Available online at https://doi.org/10.5067/MIODIS/MOD11A1.006. Accessed on 5 January 2022.
Wang, W., H. Lin, N. C. Chen, et al., 2021: Evaluation of multi-source precipitation products over the Yangtze River Basin. Atmos. Res., 249, 105287, doi: https://doi.org/10.1016/j.atmosres.2020.105287.
Article
Google Scholar
Zhu, W. B., A. Lyu, S. F. Jia, et al., 2017: Retrievals of all-weather daytime air temperature from MODIS products. Remote Sens. Environ., 189, 152–163, doi: https://doi.org/10.1016/j.rse.2016.11.011.
Article
Google Scholar