Aguilar, E., A. Aziz Barry, M. Brunet, et al., 2009: Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res. Atmos., 114, D02115, doi: https://doi.org/10.1029/2008JD011010.
Google Scholar
Alexander, L. V., 2010: Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather Clim. Extremes, 11, 4–16, doi: https://doi.org/10.1016/j.wace.2015.10.007.
Google Scholar
Alex-Ogwang, B., H. S. Chen, X. Li, et al., 2014: The influence of topography on east African October to December climate: Sensitivity experiments with RegCM4. Adv. Meteor., 2014, 1–14, doi: https://doi.org/10.1155/2014/143917.
Google Scholar
Berhane, A., G. Hadgu, W. Worku, et al., 2020: Trends in extreme temperature and rainfall indices in the semi-arid areas of Western Tigray, Ethiopia. Environ. Syst. Res., 9, 3, doi: https://doi.org/10.1186/s40068-020-00165-6.
Google Scholar
Blunden, J., D. S. Arndt, and M. O. Baringer, 2011: State of the climate in 2010. Bull. Amer. Meteor. Soc., 92, S1–S236, doi: https://doi.org/10.1175/1520-0477-92.6.S1.
Google Scholar
Bushesha, M. S., and J. A. Mbura, 2015: Identification of reasons for and socio-economic impacts of persistent floods in Dar es Salaam. World J. Soc. Sci. Res., 2, 180, doi: https://doi.org/10.22158/wjssr.v2n2p180.
Google Scholar
Cattani, E., A. Merino, and V. Levizzani, 2016: Evaluation of monthly satellite-derived precipitation products over East Africa. J. Hydrometeor., 17, 2555–2573, doi: https://doi.org/10.1175/JHM-D-15-0042.1.
Google Scholar
Cattani, E., A. Merino, J. A. Guijarro, et al., 2018: East Africa rainfall trends and variability 1983–2015 using three long-term satellite products. Remote Sens., 10, 931, doi: https://doi.org/10.3390/rs10060931.
Google Scholar
Chambers, J. Q., and D. A. Roberts, 2014: Drought in the Congo Basin. Nature, 509, 36–37, doi: https://doi.org/10.1038/nature13330.
Google Scholar
Chang’a, L. B., A. L. Kijazi, K. B. Mafuru, et al., 2020: Understanding the evolution and socio-economic impacts of the extreme rainfall events in March-May 2017 to 2020 in East Africa. Atmos. Climate Sci., 10, 553–572, doi: https://doi.org/10.4236/acs.2020.104029.
Google Scholar
Chen, M. Y., W. Shi, P. P. Xie, et al., 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos., 113, D04110, doi: https://doi.org/10.1029/2007JD009132.
Google Scholar
Chikoore, H., J. H. Vermeulen, and M. R. Jury, 2015: Tropical cyclones in the Mozambique Channel: January-March 2012. Nat. Hazards, 77, 2081–2095, doi: https://doi.org/10.1007/s11069-015-1691-0.
Google Scholar
Cuthbert, M. O., R. G. Taylor, G. Favreau, et al., 2019: Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature, 572, 230–234, doi: https://doi.org/10.1038/s41586-019-1441-7.
Google Scholar
Dinku, T., P. Ceccato, E. Grover-Kopec, et al., 2007: Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens., 28, 1503–1526, doi: https://doi.org/10.1080/01431160600954688.
Google Scholar
Dyer, E. L. E., D. B. A. Jones, J. Nusbaumer, et al., 2017: Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. J. Geophys. Res. Atmos., 122, 6882–6898, doi: https://doi.org/10.1002/2016JD026240.
Google Scholar
Enyew, B. D., and G. J. Steeneveld, 2014: Analysing the impact of topography on precipitation and flooding on the Ethiopian highlands. J. Geol. Geosci., 3, 1000173, doi: https://doi.org/10.4172/23296755.1000173.
Google Scholar
Fessehaye, M., Y. Brugnara, M. J. Savage, et al., 2019: A note on air temperature and precipitation variability and extremes over Asmara: 1914–2015. Int. J. Climatol., 39, 5215–5227, doi: https://doi.org/10.1002/joc.6134.
Google Scholar
Fitchett, J. M., and S. W. Grab, 2014: A 66-year tropical cyclone record for South-East Africa: temporal trends in a global context. Int. J. Climatol., 34, 3604–3615, doi: https://doi.org/10.1002/joc.3932.
Google Scholar
Funk, C., M. D. Dettinger, J. C. Michaelsen, et al., 2008: Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl. Acad. Sci. USA, 105, 11,081–11,086, doi: https://doi.org/10.1073/pnas.0708196105.
Google Scholar
Funk, C., A. Hoell, S. Shukla, et al., 2016: The East African monsoon system: Seasonal climatologies and recent variations. The Monsoons and Climate Change: Observations and Modeling, L. M. V. de Carvalho, and C. Jones, Eds., Springer International Publishing, Cham, 163–185, doi: https://doi.org/10.1007/978-3-319-21650-8_8.
Google Scholar
Funk, C. C., G. Eilerts, J. Verdin, et al., 2011: A climate trend analysis of Sudan. Fact Sheet 2011–3072. U.S. Geological Survey, Reston, VA, 6 pp, doi: https://doi.org/10.3133/fs20113072.
Google Scholar
Funk, C. C., J. Rowland, G. Eilerts, et al., 2012a: A climate trend analysis of Ethiopia. Fact Sheet 2012–3053. U.S. Geological Survey, Reston, VA, 6 pp, doi: https://doi.org/10.3133/fs20123053.
Google Scholar
Funk, C. C., J. Rowland, G. Eilerts, et al., 2012b: A climate trend analysis of Uganda. Fact Sheet 2012–3062. U.S. Geological Survey, Reston, VA, 4 pp, doi: https://doi.org/10.3133/fs20123062.
Google Scholar
Gebrechorkos, S. H., S. Hülsmann, and C. Bernhofer, 2019: Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. Int. J. Climatol., 39, 18–30, doi: https://doi.org/10.1002/joc.5777.
Google Scholar
Gebrechorkos, S. H., S. Hülsmann, and C. Bernhofer, 2020: Analysis of climate variability and droughts in East Africa using high-resolution climate data products. Glob. Planet. Change, 186, 103130, doi: https://doi.org/10.1016/j.gloplacha.2020.103130.
Google Scholar
Harrison, L., C. Funk, and P. Peterson, 2019: Identifying changing precipitation extremes in Sub-Saharan Africa with gauge and satellite products. Environ. Res. Lett., 14, 085007, doi: https://doi.org/10.1088/1748-9326/ab2cae.
Google Scholar
Hastenrath, S., D. Polzin, and C. Mutai, 2010: Diagnosing the droughts and floods in equatorial East Africa during boreal autumn 2005–08. J. Climate, 23, 813–817, doi: https://doi.org/10.1175/2009JCLI3094.1.
Google Scholar
Hession, S. L., and N. Moore, 2011: A spatial regression analysis of the influence of topography on monthly rainfall in East Africa. Int. J. Climatol., 31, 1440–1456, doi: https://doi.org/10.1002/joc.2174.
Google Scholar
Huffman, G. J., D. T. Bolvin, E. J. Nelkin, et al., 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasiglobal, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55, doi: https://doi.org/10.1175/JHM560.1.
Google Scholar
Jiang, S. S., Z. X. Zhang, Y. H. Huang, et al., 2017: Evaluating the TRMM multisatellite precipitation analysis for extreme precipitation and streamflow in Ganjiang River basin, China. Adv. Meteor., 2017, 2902493, doi: https://doi.org/10.1155/2017/2902493.
Google Scholar
Jiang, Y., L. M. Zhou, C. J. Tucker, et al., 2019: Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Climate Change, 9, 617–622, doi: https://doi.org/10.1038/s41558-019-0512-y.
Google Scholar
Kendall, M. G., 1970: Rank Correlation Methods. 4th ed. Charles Griffin, London, 210 pp.
Google Scholar
Kilavi, M., D. MacLeod, M. Ambani, et al., 2018: Extreme rainfall and flooding over central Kenya including Nairobi city during the long-rains season 2018: Causes, predictability, and potential for early warning and actions. Atmosphere, 9, 472, doi: https://doi.org/10.3390/atmos9120472.
Google Scholar
Kiunsi, R., 2013: The constraints on climate change adaptation in a city with a large development deficit: the case of Dar es Salaam. Environ. Urban., 25, 321–337, doi: https://doi.org/10.1177/0956247813489617.
Google Scholar
Kucera, P. A., E. E. Ebert, F. J. Turk, et al., 2013: Precipitation from space: Advancing earth system science. Bull. Amer. Meteor. Soc., 94, 365–375, doi: https://doi.org/10.1175/BAMS-D-11-00171.1.
Google Scholar
Liebmann, B., I. Bladé, G. N. Kiladis, et al., 2012: Seasonality of African precipitation from 1996 to 2009. J. Climate, 25, 4304–4322, doi: https://doi.org/10.1175/JCLI-D-11-00157.1.
Google Scholar
Liebmann, B., M. P. Hoerling, C. Funk, et al., 2014: Understanding recent eastern Horn of Africa rainfall variability and change. J. Climate, 27, 8630–8645, doi: https://doi.org/10.1175/JCLI-D-13-00714.1.
Google Scholar
Liebmann, B., I. Bladé, C. Funk, et al., 2017: Climatology and interannual variability of boreal spring wet season precipitation in the eastern Horn of Africa and implications for its recent decline. J. Climate, 30, 3867–3886, doi: https://doi.org/10.1175/JCLI-D-16-0452.1.
Google Scholar
Lyon, B., 2014: Seasonal drought in the Greater Horn of Africa and its recent increase during the March-May long rains. J. Climate, 27, 7953–7975, doi: https://doi.org/10.1175/JCLI-D-13-00459.1.
Google Scholar
Lyon, B., and D. G. Dewitt, 2012: A recent and abrupt decline in the East African long rains. Geophys. Res. Lett., 39, L02702, doi: https://doi.org/10.1029/2011GL050337.
Google Scholar
Lyon, B., and N. Vigaud, 2017: Unraveling East Africa’s climate paradox. Climate Extremes: Patterns and Mechanisms, S. Y. S. Wang, J. H. Yoon, C. C. Funk, et al., Eds., American Geophysical Union (AGU), Hoboken, 265–281, doi: https://doi.org/10.1002/9781119068020.ch16.
Google Scholar
Mafuru, K. B., and G. R. Tan, 2018: Assessing prone areas to heavy rainfall and the impaction of the upper warm temperature anomaly during March–May rainfall season in Tanzania. Adv. Meteor., 2018, 8353296, doi: https://doi.org/10.1155/2018/8353296.
Google Scholar
Mahbod, M., A. Shirvani, and F. Veronesi, 2019: A comparative analysis of the precipitation extremes obtained from tropical rainfall-measuring mission satellite and rain gauges datasets over a semiarid region. Int. J. Climatol., 39, 495–515, doi: https://doi.org/10.1002/joc.5824.
Google Scholar
Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245–259, doi: https://doi.org/10.2307/1907187.
Google Scholar
Mavume, A., L. Rydberg, M. Rouault, et al., 2009: Climatology and landfall of tropical cyclones in the South-West Indian Ocean. West. Indian Ocean J. Mar. Sci., 8, 15–36, doi: https://doi.org/10.4314/wiojms.v8i1.56672.
Google Scholar
Meier-Fleischer, K., M. Böttinger, and M. Haley, 2017: NCL User Guide. High Quality Graphics with NCL 6.4.0. Deutsches Klimarechenzentrum (DKRZ), Hamburg, Germany, 294 pp, doi: https://doi.org/10.5065/D6WD3XH5.
Google Scholar
Mekasha, A., K. Tesfaye, and A. J. Duncan, 2014: Trends in daily observed temperature and precipitation extremes over three Ethiopian eco-environments. Int. J. Climatol., 34, 1990–1999, doi: https://doi.org/10.1002/joc.3816.
Google Scholar
Mequaninta, F., R. Mitikub, and A. Shimelesc, 2016: Observed and future climate variability and extremes over East Shoa Zone, Ethiopia. J. Climatol. Wea. Forecasting, 4, 1000183, doi: https://doi.org/10.4172/2332-2594.1000183.
Google Scholar
Michaelides, S., V. Levizzani, E. Anagnostou, et al., 2009: Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res., 94, 512–533, doi: https://doi.org/10.1016/j.atmosres.2009.08.017.
Google Scholar
Niang, I., O. C. Ruppel, M. A. Abdrabo, et al., 2014: Africa Climate Change 2014: Impacts, Adaptation and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, V. R. Barros, C. B. Field, D. J. Dokken, et al., Eds., Cambridge University Press, Cambridge, 1199–1266, doi: https://doi.org/10.1017/CBO9781107415386.002.
Nicholson, S. E., 1996: A review of climate dynamics and climate variability in eastern Africa. The Limnology, Climatology and Paleoclimatology of the East African Lakes, T. C. Johnson, E. O. Odada, and K. T. Whittaker, Eds., Routledge, London, 25–56, doi: https://doi.org/10.1201/9780203748978-2.
Google Scholar
Nicholson, S. E., 2015: Long-term variability of the East African ‘short rains’ and its links to large-scale factors. Int. J. Climatol., 35, 3979–3990, doi: https://doi.org/10.1002/joc.4259.
Google Scholar
Nicholson, S. E., 2016a: An analysis of recent rainfall conditions in eastern Africa. Int. J. Climatol., 36, 526–532, doi: https://doi.org/10.1002/joc.4358.
Google Scholar
Nicholson, S. E., 2016b: The Turkana low-level jet: mean climatology and association with regional aridity. Int. J. Climatol., 36, 2598–2614, doi: https://doi.org/10.1002/joc.4515.
Google Scholar
Nicholson, S. E., 2017: Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys., 55, 590–635, doi: https://doi.org/10.1002/2016RG000544.
Google Scholar
Nicholson, S. E., 2018: The ITCZ and the seasonal cycle over equatorial Africa. Bull. Amer. Meteor. Soc., 99, 337–348, doi: https://doi.org/10.1175/BAMS-D-16-0287.1.
Google Scholar
Nicholson, S. E., B. Some, J. McCollum, et al., 2003: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteor., 42, 1355–1368, doi: https://doi.org/10.1175/1520-0450(2003)042<1355:VOTAOR>2.0.CO;2.
Google Scholar
Omondi, P. A., J. L. Awange, E. Forootan, et al., 2014: Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int. J. Climatol., 34, 1262–1277, doi: https://doi.org/10.1002/joc.3763.
Google Scholar
Ongoma, V., H. S. Chen, C. J. Gao, et al., 2018a: Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble. Nat. Hazards, 90, 901–920, doi: https://doi.org/10.1007/s11069-017-3079-9.
Google Scholar
Ongoma, V., H. S. Chen, and G. W. Omony, 2018b: Variability of extreme weather events over the equatorial East Africa, a case study of rainfall in Kenya and Uganda. Theor. Appl. Climatol., 131, 295–308, doi: https://doi.org/10.1007/s00704-016-1973-9.
Google Scholar
Onyango, A. O., H. M. Xu, and Z. H. Lin, 2020: Diurnal cycle of rainfall over Lake Victoria Basin during the long-rain season based on TRMM satellite estimate. Int. J. Climatol., 40, 4622–4637, doi: https://doi.org/10.1002/joc.6479.
Google Scholar
Ozer, P., and A. Mahamoud, 2013: Recent extreme precipitation and temperature changes in Djibouti City (1966–2011). J. Climatol., 2013, 928501, doi: https://doi.org/10.1155/2013/928501.
Google Scholar
Peterson, T. C., and M. J. Manton, 2008: Monitoring changes in climate extremes: A tale of international collaboration. Bull. Amer. Meteor. Soc., 89, 1266–1271, doi: https://doi.org/10.1175/1520-0477-89.9.1251.
Google Scholar
Schmocker, J., H. P. Liniger, J. N. Ngeru, et al., 2016: Trends in mean and extreme precipitation in the Mount Kenya region from observations and reanalyses. Int. J. Climatol., 36, 1500–1514, doi: https://doi.org/10.1002/joc.4438.
Google Scholar
Schott, F. A., S. P. Xie, and J. P. Jr. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi: https://doi.org/10.1029/2007RG000245.
Google Scholar
Schulzweida, U., 2019: CDO User Guide (1.9.8). Zenodo, 222 pp, doi: https://doi.org/10.5281/ZENODO.3539275.
Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s Tau. J. Amer. Stat. Assoc., 63, 1379–1389, doi: https://doi.org/10.1080/01621459.1968.10480934.
Google Scholar
Seneviratne, S. I., N. Nicholls, D. Easterling, et al., 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, C. B. Field, V. Barros, T. F. Stocker, et al., Eds., Cambridge University Press, Cambridge, UK, 109–230, doi: https://doi.org/10.1017/CBO9781139177245.006.
Google Scholar
Shiferaw, A., T. Tadesse, C. Rowe, et al., 2018: Precipitation extremes in dynamically downscaled climate scenarios over the Greater Horn of Africa. Atmosphere, 9, 112, doi: https://doi.org/10.3390/atmos9030112.
Google Scholar
Tan, M. L., 2019: Assessment of TRMM product for precipitation extreme measurement over the Muda River Basin, Malaysia. HydroResearch, 2, 69–75, doi: https://doi.org/10.1016/j.hydres.2019.11.004.
Google Scholar
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183–7192, doi: https://doi.org/10.1029/2000JD900719.
Google Scholar
Taylor, R. G., M. C. Todd, L. Kongola, et al., 2013: Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat. Climate Change, 3, 374–378, doi: https://doi.org/10.1038/nclimate1731.
Google Scholar
Theil, H., 1992: A rank-invariant method of linear and polynomial regression analysis. Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology, B. Raj, and J. Koerts, Eds., Springer, Dordrecht, 345–381, doi: https://doi.org/10.1007/978-94-011-2546-8_20.
Google Scholar
Vincent, L. A., E. Aguilar, M. Saindou, et al., 2011: Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean, 1961–2008. J. Geophys. Res. Atmos., 116, D10108, doi: https://doi.org/10.1029/2010JD015303.
Google Scholar
Wainwright, C. M., J. H. Marsham, R. J. Keane, et al., 2019: ‘Eastern African Paradox’ rainfall decline due to shorter not less intense Long Rains. npj Climate Atmos. Sci., 2, 34, doi: https://doi.org/10.1038/s41612-019-0091-7.
Google Scholar
Wainwright, C. M., D. L. Finney, M. Kilavi, et al., 2021: Extreme rainfall in East Africa, October 2019–January 2020 and context under future climate change. Weather, 76, 26–31, doi: https://doi.org/10.1002/wea.3824.
Google Scholar
Walker, D. P., J. H. Marsham, C. E. Birch, et al., 2020: Common mechanism for interannual and decadal variability in the East African long rains. Geophys. Res. Lett., 47, e2020GL089182, doi: https://doi.org/10.1029/2020GL089182.
Google Scholar
Wenhaji Ndomeni, C., E. Cattani, A. Merino, et al., 2018: An observational study of the variability of East African rainfall with respect to sea surface temperature and soil moisture. Quart. J. Roy. Meteor. Soc., 144, 384–404, doi: https://doi.org/10.1002/qj.3255.
Google Scholar
Williams, A. P., and C. Funk, 2011: A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dyn., 37, 2417–2435, doi: https://doi.org/10.1007/s00382-010-0984-y.
Google Scholar
Williams, A. P., C. Funk, J. Michaelsen, et al., 2012: Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature. Climate Dyn., 39, 2307–2328, doi: https://doi.org/10.1007/s00382-011-1222-y.
Google Scholar
Yang, W. C., R. Seager, M. A. Cane, et al., 2015: The annual cycle of East African precipitation. J. Climate, 28, 2385–2404, doi: https://doi.org/10.1175/JCLI-D-14-00484.1.
Google Scholar
Zhang, Q., V. P. Singh, J. F. Li, et al., 2011: Analysis of the periods of maximum consecutive wet days in China. J. Geophys. Res. Atmos., 116, D23106, doi: https://doi.org/10.1029/2011JD016088.
Google Scholar
Zhang, X. B., L. Alexander, G. C. Hegerl, et al., 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change, 2, 851–870, doi: https://doi.org/10.1002/wcc.147.
Google Scholar
Zhang, Y., F. Jiang, W. Wei, et al., 2012: Changes in annual maximum number of consecutive dry and wet days during 1961–2008 in Xinjiang, China. Nat. Hazards Earth Syst. Sci., 12, 1353–1365, doi: https://doi.org/10.5194/nhess-12-1353-2012.
Google Scholar
Zhou, L. M., Y. H. Tian, R. B. Myneni, et al., 2014: Widespread decline of Congo rainforest greenness in the past decade. Nature, 508, 86–90, doi: https://doi.org/10.1038/nature13265.
Google Scholar
Zolina, O., C. Simmer, S. K. Gulev, et al., 2010: Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls. Geophys. Res. Lett., 37, L06704, doi: https://doi.org/10.1029/2010GL042468.
Google Scholar