Abstract
The change of summertime synoptic-scale wave train (SWT) activity over the western North Pacific (WNP) since 1950 was investigated based on the NCEP-NCAR reanalysis data. It is found that the intensity of SWT has a rising trend, while its structure and phase propagation characteristics remain unchanged. Environmental factors responsible for the rising trend are investigated. By separating the whole period into three warming phases (P1: 1950–1958, P2: 1978–1986, and P3: 2006–2014), we found that even though the vertical velocity shows a rising trend, the background low-level vorticity over the monsoon trough region increases from P1 to P2 but decreases from P2 to P3, and so is the low-level barotropic energy conversion (CK). Thus, just the environmental dynamic factor could not explain the continuous rising SWT trend. On the other hand, thermodynamic factor, such as the sea surface temperature (SST), moisture, and atmospheric instability, shows a clear step-by-step increasing trend. A non-dimensional synoptic activity index (SAI) that combines the dynamic and thermodynamic factors is then proposed. This index well captures the observed long-term trend of the SWT intensity.
Similar content being viewed by others
References
Aiyyer, A. R., and J. Molinari, 2003: Evolution of mixed Rossby-gravity waves in idealized MJO environments. J. Atmos. Sci., 60, 2837–2855, doi: https://doi.org/10.1175/1520-0469(2003)060<2837:EOMRWI>2.0.CO;2.
Arnold, N. P., M. Branson, Z. Kuang, et al., 2015: MJO intensification with warming in the superparameterized CESM. J. Climate, 28, 2706–2724, doi: https://doi.org/10.1175/JCLI-D-14-00494.1.
Cao, X., T. Li, M. Peng, et al., 2014: Effects of monsoon trough intraseasonal oscillation on tropical cyclogenesis over the western North Pacific. J. Atmos. Sci., 71, 4639–4660, doi: https://doi.org/10.1175/JAS-D-13-0407.1.
Chan, J. C. L., and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 4590–4602, doi: https://doi.org/10.1175/3240.1.
Chen, G. H., and R. H. Huang, 2009: Interannual variations in mixed Rossby-gravity waves and their impacts on tropical cyclogenesis over the western North Pacific. J. Climate, 22, 535–549, doi: https://doi.org/10.1175/2008JCLI2221.1.
Chen, G. H., and C. Chou, 2014: Joint contribution of multiple equatorial waves to tropical cyclogenesis over the western North Pacific. Mon. Wea. Rev., 142, 79–93, doi: https://doi.org/10.1175/MWR-D-13-00207.1.
Cui, J. X., and T. Li, 2019: Changes of MJO propagation characteristics under global warming. Climate Dyn., 53, 5311–5327, doi: https://doi.org/10.1007/s00382-019-04864-4.
Dickinson, M., and J. Molinari, 2002: Mixed Rossby-gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59, 2183–2196, doi: https://doi.org/10.1175/1520-0469(2002)059<2183:MRGWAW>2.0.CO;2.
Dunkerton, T. J., 1993: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Vertical structure and interannual variability. J. Atmos. Sci., 50, 3292–3307, doi: https://doi.org/10.1175/1520-0469(1993)050<3292:OODMWO>2.0.CO;2.
Dunkerton, T. J., and M. P. Baldwin, 1995: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Horizontal structure and propagation. J. Atmos. Sci., 52, 1585–1601, doi: https://doi.org/10.1175/1520-0469(1995)052<1585:OODMWO>2.0.CO;2.
Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688, doi: https://doi.org/10.1038/nature03906.
Emanuel, K., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. Proceedings of the 26th Conference on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc., Miami, FL, 240–241.
Esterby, S. R., 1996: Review of methods for the detection and estimation of trends with emphasis on water quality applications. Hydrol. Processes, 10, 127–149, doi: https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<127::AID-HYP354>3.0.CO;2-8.
Fu, B., T. Li, M. S. Peng, et al., 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763–780, doi: https://doi.org/10.1175/WAF1013.1.
Fukutomi, Y., C. Kodama, Y. Yamada, et al., 2016: Tropical synoptic-scale wave disturbances over the western Pacific simulated by a global cloud-system resolving model. Theor. Appl. Climatol., 124, 737–755, doi: https://doi.org/10.1007/s00704-015-1456-4.
Ge, X. Y., T. Li, and M. S. Peng, 2013a: Tropical cyclone genesis efficiency: Mid-level versus bottom vortex. J. Trop. Meteor., 19, 197–213, doi: https://doi.org/10.16555/j.1006-8775.2013.03.001.
Ge, X. Y., T. Li, and M. Peng, 2013b: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 3859–3875, doi: https://doi.org/10.1175/JAS-D-13-066.1.
Hansen, J., R. Ruedy, M. Sato, et al., 2001: A closer look at United States and global surface temperature change. J. Geophys. Res. Atmos., 106, 23947–23963, doi: https://doi.org/10.1029/2001JD000354.
He, C., and T. Li, 2018: Does global warming amplify interannual climate variability? Climate Dyn., 22, 2667–2684, doi: https://doi.org/10.1007/s00382-018-4286-0.
Hirsch, R. H., J. R. Slack, and R. A. Smith, 1982: Techniques of trend analysis for monthly water quality data. Water Resotr. Res., 18, 107–121, doi: https://doi.org/10.1029/WR018i001p00107.
Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Phys., 56, 57–79, doi: https://doi.org/10.1007/BF01022521.
Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, Burlington, MA, 535 pp.
Hsu, P. C., and T. Li, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J. Climate, 24, 942–961, doi: https://doi.org/10.1175/2010JCLI3834.1.
Hsu, P. C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927–941, doi: https://doi.org/10.1175/2010JCLI3833.1.
Huang, B. Y., P. W. Thorne, V. F. Banzon, et al., 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, doi: https://doi.org/10.1175/JCLI-D-16-0836.1.
Huang, P., C. Chou, and R. H. Huang, 2013: The activity of convectively coupled equatorial waves in CMIP3 global climate models. Theor. Appl. Climatol., 112, 697–711, doi: https://doi.org/10.1007/s00704-012-0761-4.
Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi: https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Kuo, H. C., J. H. Chen, R. T. Williams, et al., 2001: Rossby waves in zonally opposing mean flow: Behavior in Northwest Pacific summer monsoon. J. Atmos. Sci., 58, 1035–1050, doi: https://doi.org/10.1175/1520-0469(2001)058<1035:RWIZOM>2.0.CO;2.
Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 1888–1913, doi: https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.
Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 2523–2539, doi: https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.
Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 1093–1102, doi: https://doi.org/10.1175/JAS3676.1.
Li, T., 2012: Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclones: Formation, Triggers, and Control, K. Oouchi, and H. Fudeyasu, Eds., Nova Science Publishers, Inc., New York, 61–94.
Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci., 66, 285–314, doi: https://doi.org/10.3319/TAO.2005.16.2.285(A).
Li, T., and B. Fu, 2006: Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part I: Satellite data analyses. J. Atmos. Sci., 63, 1377–1389, doi: https://doi.org/10.1175/JAS3692.1.
Li, T., and P.-C. Hsu, 2017: Fundamentals of Tropical Climate Dynamics. Springer, Cham., 229 pp. [Available online at https://link.springer.com/book/10.1007%2F978-3-319-59597-9#toc]
Li, T., B. Fu, X. Y. Ge, et al., 2003: Satellite data analysis and numerical simulation of tropical cyclone formation. Geophy. Res. Lett., 30, 2122, doi: https://doi.org/10.1029/2003GL018556.
Li, T., X. Y. Ge, B. Wang, et al., 2006: Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part II: Numerical simulations. J. Atmos. Sci., 63, 1390–1409, doi: https://doi.org/10.1175/JAS3693.1.
Li, T., M. Kwon, M. Zhao, et al., 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, L21804, doi: https://doi.org/10.1029/2010GL045124.
Li, Z., W. D. Yu, T. Li, et al., 2013: Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle. J. Climate, 26, 1033–1046, doi: https://doi.org/10.1175/JCLI-D-11-00627.1.
Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 1463–1479, doi: https://doi.org/10.1175/1520-0469(1990)047<1463:SSDNTE>2.0.CO;2.
Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436, doi: https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.
Liu, P., T. Li, B. Wang, et al., 2013: MJO change with A1B global warming estimated by the 40-km ECHAM5. Climate Dyn., 41, 1009–1023, doi: https://doi.org/10.1007/s00382-012-1532-8.
Maloney, E. D., and D. L. Hartmann, 2001: The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 2545–2558, doi: https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.
Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 2153–2168, doi: https://doi.org/10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2.
Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245–259, doi: https://doi.org/10.2307/1907187.
Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 2699–2721, doi: https://doi.org/10.1175/2010JCLI3338.1.
Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 1377–1396, doi: https://doi.org/10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.
Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 2027–2043, doi: https://doi.org/10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2.
Schecter, D. A., and D. H. Dubin, 1999: Vortex motion driven by a background vorticity gradient. Phys. Rev. Lett., 83, 2191–2194, doi: https://doi.org/10.1103/PhysRevLett.83.2191.
Serra, Y. L., X. N. Jiang, B. J. Tian, et al., 2014: Tropical intraseasonal modes of the atmosphere. Annu. Rev. Environ. Resour., 39, 189–215, doi: https://doi.org/10.1146/annueev-environ-020413-134219.
Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 1739–1742, doi: https://doi.org/10.1029/1999g1011043.
Tai, K.-S., and Y. Ogura, 1987: An observational study of easterly waves over the eastern Pacific in the northern summer using FGGE data. J. Atmos. Sci., 44, 339–361, doi: https://doi.org/10.1175/1520-0469(1987)044<0339:AOSOEW>2.0.CO;2.
Takayabu, Y. N., and T. Nitta, 1993: 3–5 day-period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221–246, doi: https://doi.org/10.2151/jmsj1965.71.2_221.
Tam, C.-Y., and T. Li, 2006: The origin and dispersion characteristics of the observed tropical summertime synoptic-scale waves over the western Pacific. Mon. Wea. Rev., 134, 1630–1646, doi: https://doi.org/10.1175/MWR3147.1.
Wallace, J. M., 1971: Spectral studies of tropospheric wave disturbances in the tropical western Pacific. Rev. Geophys., 9, 557–612, doi: https://doi.org/10.1029/RG009i003p00557.
Webster, P. J., G. J. Holland, J. A. Curry, et al., 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846, doi: https://doi.org/10.1126/science.1116448.
Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Technical Report NESDIS61, U.S. Department of Commerce, 181 pp. [Available at https://repository.library.noaa.gov/view/noaa/13116. Accessed on 15 October 2020.]
Zhao, C., and T. Li, 2019: Basin dependence of the MJO modulating tropical cyclone genesis. Climate Dyn., 52, 6081–6096, doi: https://doi.org/10.1007/s00382-018-4502-y.
Zhao, H. K., X. N. Jiang, and L. G. Wu, 2016: Boreal summer synoptic-scale waves over the western North Pacific in multimodel simulations. J. Climate, 29, 4487–4508, doi: https://doi.org/10.1175/JCLI-D-15-0696.1.
Zhou, C. H., and T. Li, 2010: Upscale feedback of tropical synoptic variability to intraseasonal oscillations through the nonlinear rectification of the surface latent heat flux. J. Climate, 23, 5738–5754, doi: https://doi.org/10.1175/2010JCLI3468.1.
Zhou, X. Q., and B. Wang, 2007: Transition from an eastern Pacific upper-level mixed Rossby-gravity wave to a western Pacific tropical cyclone. Geophys. Res. Lett., 34, L24801, doi: https://doi.org/10.1029/2007GL031831.
Acknowledgments
This work is supported by School of Ocean and Earth Science and Technology (SOEST) contribution No. 10995, International Pacific Research Center (IPRC) contribution No. 1449, and Earth System Modeling Center (ESMC) contribution No. 312.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Key Research and Development Program of China (2017YFA0603802), National Natural Science Foundation of China (41630423 and 41875069), US National Oceanic and Atmospheric Adminsitration (NA18OAR4310298), and US National Science Foundation (AGS-2006553).
Rights and permissions
About this article
Cite this article
Zhou, X., Li, T. Increasing Trend of Summertime Synoptic Wave Train Activity over the Western North Pacific since 1950. J Meteorol Res 34, 1013–1024 (2020). https://doi.org/10.1007/s13351-020-0013-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-020-0013-y