The Effect of Solar Cycle on Climate of Northeast Asia

Abstract

The impact of solar activity on climate system is spatiotemporally selective and usually more significant on the regional scale. Using statistical methods and solar radio flux (SRF) data, this paper investigates the impact of the solar 11-yr cycle on regional climate of Northeast Asia in recent decades. Significant differences in winter temperature, precipitation, and the atmospheric circulation over Northeast Asia are found between peak and valley solar activity years. In peak years, temperature is higher over vast areas of the Eurasian continent in middle and high latitudes, and prone to producing anomalous high pressure there. Northeast Asia is located to the south of the anomalous high pressure, where the easterlies prevail and transport moisture from the western Pacific Ocean to the inland of East Asia and intensify precipitation there. In valley years, temperature is lower over the Eurasian continent and northern Pacific Ocean in middle and high latitudes, and there maintain anomalous low pressure systems in the two regions. Over the Northeast Asian continent, north winds prevail, which transport cold and dry air mass from the high latitude to Northeast Asia and reduce precipitation there. The correlation coefficient of winter precipitation in Northeast China and SRF reaches 0.4, and is statistically significant at the 99% confidence level based on the Student’s t-test. The latent heat flux anomalies over the Pacific Ocean caused by solar cycle could explain the spatial pattern of abnormal winter precipitation of China, suggesting that the solar activity may change the climate of Northeast Asia through air-sea interaction.

This is a preview of subscription content, access via your institution.

References

  1. Barron, J. A., and D. Bukry, 2007: Solar forcing of Gulf of California climate during the past 2000 yr suggested by diatoms and silicoflagellates. Mar. Micropaleontol., 62, 115–139, doi: https://doi.org/10.1016/j.marmicro.2006.08.003.

    Article  Google Scholar 

  2. Bond, G., B. Kromer, J. Beer, et al., 2001: Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130–2136, doi: https://doi.org/10.1126/science.1065680.

    Article  Google Scholar 

  3. Camp, C. D., and K. K. Tung, 2007: Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophys. Res. Lett., 34, L14703, doi: https://doi.org/10.1029/2007GL030207.

    Article  Google Scholar 

  4. Christoforou, P., and S. Hameed, 1997: Solar cycle and the Pacific ‘centers of action’. Geophys. Res. Lett., 24, 293–296, doi: https://doi.org/10.1029/97GL00017.

    Article  Google Scholar 

  5. Crowley, T. J., 2000: Causes of climate change over the past 1000 years. Science, 289, 270–277, doi: https://doi.org/10.1126/science.289.5477.270.

    Article  Google Scholar 

  6. Curry, J., 2014: Climate science: Uncertain temperature trend. Nat. Geosci., 7, 83–84, doi: https://doi.org/10.1038/ngeo2078.

    Article  Google Scholar 

  7. Elizabeth, N.-R., 1995: The maunder minimum and the deepest phase of the little ice age: Solar output and climate during the Holocene. Proc. 14th EPC/ESF Workshop, German, 131–144.

  8. Fleitmann, D., S. J. Burns, M. Mudelsee, et al., 2003: Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science, 300, 1737–1739, doi: https://doi.org/10.1126/science.1083130.

    Article  Google Scholar 

  9. Frisia, S., A. Borsato, N. Preto, et al., 2003: Late Holocene annual growth in three Alpine stalagmites records the influence of solar activity and the North Atlantic Oscillation on winter climate. Earth Planet. Sci. Lett., 216, 411–124, doi: https://doi.org/10.1016/S0012-821X(03)00515-6.

    Article  Google Scholar 

  10. Fyfe, J. C., N. P. Gillett, and F. W. Zwiers, 2013: Overestimated global warming over the past 20 years. Nat. Climate Change, 3, 767–769, doi: https://doi.org/10.1038/nclimate1972.

    Article  Google Scholar 

  11. Gray, L. J., J. Beer, M. Geller, et al., 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, doi: https://doi.org/10.1029/2009RG000282.

    Article  Google Scholar 

  12. Haltia-Hovi, E., T. Saarinen, and M. Kukkonen, 2007: A 2000-year record of solar forcing on varved lake sediment in Eastern Finland. Quat. Sci. Rev., 26, 678–689, doi: https://doi.org/10.1016/j.quascirev.2006.11.005.

    Article  Google Scholar 

  13. Hodell, D. A., M. Brenner, J. H. Curtis, et al., 2001: Solar forcing of drought frequency in the Maya lowlands. Science, 292, 1367–1370, doi: https://doi.org/10.1126/science.1057759.

    Article  Google Scholar 

  14. Hong, Y. T., D. S. Liu, H. B. Jiang, et al., 2000: Evidence for solar forcing of climate variation from δ18O of peat cellulose. Sci. China Ser. D Earth Sci., 43, 217–224, doi: https://doi.org/10.1007/BF02878152.

    Article  Google Scholar 

  15. Hu, F. S., D. Kaufman, S. Yoneji, et al., 2003: Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science, 301, 1890–1893, doi: https://doi.org/10.1126/science.1088568.

    Article  Google Scholar 

  16. Ineson, S., A. A. Scaife, J. R. Knight, et al., 2011: Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci., 4, 753–757, doi: https://doi.org/10.1038/ngeo1282.

    Article  Google Scholar 

  17. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi: https://doi.org/10.1017/CBO9781107415324.

    Google Scholar 

  18. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi: https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  19. Kerr, R. A., 2009: What happened to global warming? Scientists say just wait a bit. Science, 326, 28–29, doi: https://doi.org/10.1126/science.326_28a.

    Article  Google Scholar 

  20. Kilcik, A., 2005: Regional sun-climate interaction. J. Atmos. Sol.-Terr. Phys., 61, 1573–1579, doi: https://doi.org/10.1016/j.jastp.2005.09.003.

    Article  Google Scholar 

  21. Knight, J., J. J. Kennedy, C. Folland, et al., 2009: Do global temperature trends over the last decade falsify climate predictions? [in “State of the Climate in 2008”] Bull. Amer. Meteor. Soc., 90, S22–S23, doi: https://doi.org/10.1175/BAMS-90-8-StateoftheClimate.

    Google Scholar 

  22. Meehl, G. A., W. M. Washington, T. M. L. Wigley, et al., 2003: Solar and greenhouse gas forcing and climate response in the twentieth century. J. Climate, 16, 426–444, doi: https://doi.org/10.1175/1520-0442(2003)016<0426:SAGGFA>2.0.CO;2.

    Article  Google Scholar 

  23. Meehl, G. A., J. M. Arblaster, G. Branstator, et al., 2008: A coupled air-sea response mechanism to solar forcing in the Pacific region. J. Climate, 21, 2883–2897, doi: https://doi.org/10.1175/2007JCLI1776.1.

    Article  Google Scholar 

  24. Neff, U., S. J. Burns, A. Mangini, et al., 2001: Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature, 411, 290–293, doi: https://doi.org/10.1038/35077048.

    Article  Google Scholar 

  25. Ogurtsov, M., S. Helama, M. Eronen, et al., 2005: Centennial-to-millennial fluctuations in July temperatures in North Finland as recorded by timberline tree rings of Scots pine. Quat. Res., 63, 182–188, doi: https://doi.org/10.1016/j.yqres.2004.11.001.

    Article  Google Scholar 

  26. Perry, C. A., and K. J. Hsu, 2000: Geophysical, archaeological, and historical evidence support a solar-output model for climate change. Proc. Natl. Acad. Sci. USA, 97, 433–12, 438, doi: https://doi.org/10.1073/pnas.230423297.

    Article  Google Scholar 

  27. Rigozo, R. N., D. J. R. Nordemann, H. E. da Silva, et al., 2007: Solar and climate signal records in tree ring width from Chile (AD 1587–1994). Planet. Space Sci., 55, 158–164, doi: https://doi.org/10.1016/j.pss.2006.06.019.

    Article  Google Scholar 

  28. Roy, I., and J. D. Haigh, 2010: Solar cycle signals in sea level pressure and sea surface temperature. Atmos. Chem. Phys., 10, 3147–3153, doi: https://doi.org/10.5194/acp-10-3147-2010.

    Article  Google Scholar 

  29. Sakurai, K., and T. Mikami, 1992: Solar activity during the little ice age. Proc. International Symposium on the Little Ice Age Climate. Tokyo Metropolitan University, Department of Geography, Tokyo, Japan, 337–340.

    Google Scholar 

  30. Song, Y., Z. C. Li, Z. N. Xiao, et al., 2016a: Analysis on interdecadal correlation between solar activity and snow depth over the Qinghai-Xizang Plateau and East Asian atmospheric circulation in winter. Plateau Meteor., 35, 1135–1147. (in Chinese)

    Google Scholar 

  31. Song, Y., Z. C. Li, J. Zhang, et al., 2016b: Review of progress in modulation effects of solar activity on snow depth over the Tibetan Plateau and East Asian summer monsoon. Adv. Meteor. Sci. Technol., 6, 148–154. (in Chinese)

    Google Scholar 

  32. Speranza, A., B. Van Geel, and J. Van der Plicht, 2003: Evidence for solar forcing of climate change at ca. 850 cal BC from a Czech peat sequence. Glob. Planet. Change, 35, 51–65, doi: https://doi.org/10.1016/S0921-8181(02)00091-7.

    Article  Google Scholar 

  33. Takahashi, K., 1966: Key day analysis on the relationship between solar activity and precipitation. J. Meteor. Soc. Japan, 44, 246–254, doi: https://doi.org/10.2151/jmsj1965.44.5_246.

    Article  Google Scholar 

  34. Tan, L. C., Y. J. Cai, L. Yi, et al., 2008: Precipitation variations of Longxi, northeast margin of Tibetan Plateau since AD 960 and their relationship with solar activity. Climate Past, 4, 19–28, doi: https://doi.org/10.5194/cp-4-19-2008.

    Article  Google Scholar 

  35. van Loon, H., G. A. Meehl, and D. J. Shea, 2007: Coupled air-sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res. Atmos., 122, D02108, doi: https://doi.org/10.1029/2006JD007378.

    Google Scholar 

  36. Wang, J.-S., and L. Zhao, 2012: Statistical tests for a correlation between decadal variation in June precipitation in China and sunspot number. J. Geophys. Res. Atmos., 111, D23117, doi: https://doi.org/10.1029/2012JD018074.

    Google Scholar 

  37. Wang, R. L., Z. N. Xiao, K. Y. Zhu, et al., 2015: Asymmetric impact of solar activity on the East Asian winter climate and its possible mechanism. Chinese J. Atmos. Sci., 39, 815–826, doi: https://doi.org/10.3878/j.issn.1006-9895.1410.14211. (in Chinese)

    Google Scholar 

  38. Wang, Y. J., H. Cheng, R. L. Edwards, et al., 2005: The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308, 854–857, doi: https://doi.org/10.1126/science.1106296.

    Article  Google Scholar 

  39. Xiao, Z. N., and W. J. Huo, 2016: Influences of solar activity on climate: The spatio-temporal selectivity of the amplification process. Adv. Meteor. Sci. Technol., 6, 141–147. (in Chinese)

    Google Scholar 

  40. Xiao, Z. N., and D. L. Li, 2016: Solar wind: A possible factor driving the interannual sea surface temperature tripolar mode over North Atlantic. J. Meteor. Res., 30, 312–327, doi: https://doi.org/10.1007/s13351-016-5087-1.

    Article  Google Scholar 

  41. Xu, H., Y. T. Hong, Q. H. Lin, et al., 2006: Temperature responses to quasi-100-yr solar variability during the past 6000 years based on δ18O of peat cellulose in Hongyuan, eastern Qinghai-Tibet Plateau, China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 230, 155–164, doi: https://doi.org/10.1016/j.palaeo.2005.07.012.

    Article  Google Scholar 

  42. Zhai, Q., 2017: Influence of solar activity on the precipitation in the North-central China. New Astron., 51, 161–168, doi: https://doi.org/10.1016/j.newast.2016.09.003.

    Article  Google Scholar 

  43. Zhao, J., and Y. B. Han, 2005: Determination of precipitation cycle in Beijing area and comparison with solar activity cycle. Earth Moon Planets, 97, 69–78, doi: https://doi.org/10.1007/s11038-9051-9.

    Google Scholar 

  44. Zhao, L., and J.-S. Wang, 2014: Robust response of the East Asian monsoon rainband to solar variability. J. Climate, 27, 3043–3051, doi: https://doi.org/10.1175/JCLI-D-13-00482.1.

    Article  Google Scholar 

Download references

Acknowledgments

The precipitation gauge data in China were provided by Jinghua Chen of the Meteorological Information Center, China Meteorological Administration. Dr. Gang Wang from the First Institute of Oceanography, State Oceanic Administration is thanked for his suggestions and comments to the paper. The power spectrum procedure is prepared and run by Dr. Yuxiang Zhu of the China Meteorological Administration Training Center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yan Song.

Additional information

Supported by the National Natural Science Foundation of China (41575091), National (Key) Basic Research and Development (973) Program of China (2012CB957803), and Natural Science Foundation of Jiangsu Province (BK20171230)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Li, Z., Gu, Y. et al. The Effect of Solar Cycle on Climate of Northeast Asia. J Meteorol Res 33, 885–894 (2019). https://doi.org/10.1007/s13351-019-8132-z

Download citation

Key words

  • solar cycle
  • solar radio flux (SRF)
  • climate anomalies
  • Northeast Asia