Journal of Meteorological Research

, Volume 33, Issue 2, pp 349–362 | Cite as

Characteristics of Near Surface Winds over Different Underlying Surfaces in China: Implications for Wind Power Development

  • Xi GongEmail author
  • Rong Zhu
  • Lianshou Chen
Regular Articles


Accurate wind and turbulence information are essential to wind energy research and utilization, among which wind shear and turbulence intensity/scale have seldom been investigated. In this paper, the observational data from the 100-m high wind towers in Xilinhot in Inner Mongolia (2009–10; grassland region), Huanghua in Hebei Province (2009–10; coastal flat region), and Xingzi County in Jiangxi Province (2010–11; mountain-lake region) are used to study the variations in near surface winds and turbulence characteristics related to the development of local wind energy over different underlying surfaces. The results indicate that (1) the percentage of the observed wind shear exponents exceeding 0.3 for the grassland region is 6%, while the percentage is 13% for the coastal flat region and 10% for the mountain-lake region. In other words, if the wind speed at 10 m is 10 m s−1, the percentage of the wind speed at 100 m exceeding 20 m s−1 for the grassland region is 6%, while the percentage is 13% for the coastal flat region and 10% for the mountain-lake region. (2) In terms of the turbulent intensity in the zonal, meridional, and vertical directions (Iu, Iv, and Iw, respectively), the frequencies of Iv /Iu < 0.8 in the grassland, coastal flat, and mountain-lake regions are 23%–29%, 32%–38%, and 30%–37%, respectively. Additionally, the frequencies of Iw / Iv < 0.5 in the grassland, coastal flat, and mountain-lake regions are 45%–75%, 52%–70%, and 43%–53%, respectively. The frequencies of Iv /Iu < 0.8 and Iw /Iu < 0.5 in each region mean that Iu is large and the air flow is unstable and fluctuating, which will damage the wind turbines. Therefore, these conditions do not meet the wind turbine design requirements, which must be considered separately. (3) At 50- and 70-m heights, the value of the turbulence scale parameter Λ in the grassland region is greater than that in the coastal flat region, and the latter is greater than that in the mountain-lake region. Therefore, under the same conditions, some parameters, e.g., the extreme directional change and extreme operating gust at the hub height in the grassland region, are greater than those in the coastal flat region, which are greater than those in the mountain-lake region. These results provide a reference for harnessing local wind energy resources and for the selection and design of wind turbines.

Key words

wind energy underlying surface wind shear exponent turbulence turbulent intensity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abkar, M., and F. Porté-Agel, 2013: The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms. Energies, 6, 2338–2361, doi: 10.3390/en6052338.CrossRefGoogle Scholar
  2. Alfredo, P. D., 2009: Sensing the wind profile. Ph.D. dissertation, Risø DTU, Roskilde, Denmark, 80 pp.Google Scholar
  3. Banta, R. M., Y. L. Pichugina, N. D. Kelley, et al., 2013: Wind energy meteorology: Insight into wind properties in the turbinerotor layer of the atmosphere from high-resolution Doppler Lidar. Bull. Amer. Meteor. Soc., 94, 883–902, doi: 10.1175/BAMS-D-11-00057.1.CrossRefGoogle Scholar
  4. China Water Conservancy and Hydropower Engineering Consulting Company, 2004: GB/T18710-2002 Methodology of wind energy resource assessment for wind farm. Standards Press of China, Beijing. (in Chinese)Google Scholar
  5. Foken, T., 2008: Micrometeorology. Springer, Heidelberg, 109–112.Google Scholar
  6. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Management Committee, 2012: GB/T 18451.1-2012 Wind turbine generator systems—design requirements. Standards Press of China, Beijing. (in Chinese)Google Scholar
  7. Gong, X., R. Zhu, G. Z. Fan, et al., 2014: Observational study of the vertical wind profile in the Inner Mongolia grassland near-surface. Acta Meteor. Sinica, 72, 711–722, doi: 10.11676/qxxb2014.058. (in Chinese)Google Scholar
  8. Gryining, S. E., E. Batchvarova, B. Brummer, et al., 2007: On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound.-Layer Meteor., 124, 251–268, doi: 10.1007/s10546-007-9166-9.CrossRefGoogle Scholar
  9. Höbbel, T., K. Thiele, and M. Clobes, 2018: Wind turbulence parameters from three dimensional full-scale measurements at 344 m high guyed mast site Gartow 2. J. Wind Eng. Ind. Aerodyn., 172, 341–350, doi: 10.1016/j.jweia.2017.11.001.CrossRefGoogle Scholar
  10. Højstrup, J., 1993: Statistical data screening procedure. Meas. Sci. Technol., 4, 153–157, doi: 10.1088/0957-0233/4/2/003.CrossRefGoogle Scholar
  11. Hu, X. M., P. M. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos., 118, 10490–10505, doi: 10.1002/jgrd.50823.CrossRefGoogle Scholar
  12. Huang, L. H., L. L. Song, G. Li, et al., 2016: Applicability of estimation methods of IEC WTGS selecting parameters in China. Meteor. Mon., 42, 1522–1530, doi: 10.7519/j.issn. 1000-0526.2016.12.010. (in Chinese)Google Scholar
  13. IEC, 2005: IEC 61400-1 Wind turbines—Part 1: Design requirement. 3rd Ed., IEC. Available at Scholar
  14. Irwin, J. S., 1979: A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability. Atmos. Environ., 13, 191–194, doi: 10.1016/0004-6981(79)90260-9.CrossRefGoogle Scholar
  15. Kaimal, J. C., 1973: Turbulenece spectra, length scales and structure parameters in the stable surface layer. Bound.-Layer Meteor., 4, 289–309, doi: 10.1007/BF02265239.CrossRefGoogle Scholar
  16. Kaimal, J. C., and J. C. Wyngaard, 1990: The Kansas and Minnesota experiments. Bound.-Layer Meteor., 50, 31–47, doi: 10.1007/BF00120517.CrossRefGoogle Scholar
  17. Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, Oxford, 236–237.Google Scholar
  18. Kaimal, J. C., J. C. Wyngaard, Y. Izumi, et al., 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563–598, doi: 10.1002/qj.49709841707.CrossRefGoogle Scholar
  19. Kalvig, S., O. T. Gudmestad, and N. Winther, 2014: Exploring the gap between ‘best knowledge’ and ‘best practice’ in boundary layer meteorology for offshore wind energy. Wind Energy, 17, 161–171, doi: 10.1002/we.1572.CrossRefGoogle Scholar
  20. Ma, Y. F., J. H. Song, and C. X. Gao, 2015: Distribution of maximum wind and extreme wind speeds in eastern Inner Mongolia Power Giad. Meteor. Sci. Technol., 43, 163–167, doi: 10.3969/j.issn.1671-6345.2015.01.027. (in Chinese)Google Scholar
  21. Mann, J., 1994: The spatial structure of neutral atmospheric surfacelayer turbulence. J. Fluid Mech., 273, 141–168, doi: 10.1017/S0022112094001886.CrossRefGoogle Scholar
  22. Mann, J., 1998: Wind field simulation. Prob. Eng. Mech., 4, 269–282, doi: 10.1016/S0266-8920(97)00036-2.CrossRefGoogle Scholar
  23. Miao, Y. C., X. M. Hu, S. H. Liu, et al., 2015: Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing–Tianjin–Hebei region and implications for air quality. J. Adv. Model. Earth Syst., 7, 1602–1626, doi: 10.1002/2015MS000522.CrossRefGoogle Scholar
  24. Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst., 24, 163–187.Google Scholar
  25. National Technical Committee for Wind Machinery Standardization, 2001: JB/T 10300-2001 Wind turbine generaator systemdesigen reguirements. Standards Press of China, Beijing. (in Chinese)Google Scholar
  26. Niu, S. J., L. J. Zhao, C. S. Lu, et al., 2012: Observational evidence for the Monin–Obukhov similarity under all stability conditions. Adv. Atmos. Sci., 29, 285–294, doi: 10.1007/s00376-011-1112-6.CrossRefGoogle Scholar
  27. Peña, A., R. Floors, A. Sathe, et al., 2016: Ten years of boundarylayer and wind-power meteorology at Høvsøre, Denmark. Bound.-Layer Meteor., 158, 1–26, doi: 10.1007/s10546-015-0079-8.CrossRefGoogle Scholar
  28. Petersen, E. L., N. G. Mortensen, L. Landberg, et al., 1998: Wind power meteorology. Part I: Climate and turbulence. Wind Energy, 1, 2–22, doi: 10.1002/(SICI)1099-1824(199809)1:1<2::AID-WE15>3.0.CO;2-Y.CrossRefGoogle Scholar
  29. Rajewski, D. A., E. S. Takle, J. K. Lundquist, et al., 2013: Crop wind energy experiment (CWEX): Observations of surfacelayer, boundary layer, and mesoscale interactions with a wind farm. Bull. Amer. Meteor. Soc., 94, 655–672, doi: 10.1175/BAMS-D-11-00240.1.CrossRefGoogle Scholar
  30. Rozenn W., C. S. Michael, L. J. Torben, et al., 2010: Simulation of Shear and Turbulence Impact on Wind Turbine Power Performance. Risø-R-1722(EN), DTU Wind Energy, Copenhagen, 55 pp.Google Scholar
  31. Sheng, P. X., J. T. Mao, J. G., Li, et al., 2003: Atmospheric Physics. Peking University Press, Beijing, 225–227. Available at (in Chinese)Google Scholar
  32. Smedman-Högström, A. S., and U. Högström, 1978: A practical method for determining wind frequency distributions for the lowest 200 m from routine meteorological data. J. Appl. Meteor., 17, 942–954, doi: 10.1175/1520-0450(1978)017<0942:APMFDW>2.0.CO;2.CrossRefGoogle Scholar
  33. Song, L. L., H. Q. Mao, H. H. Huang, et al., 2005: Analysis on boundary layer turbulent features of landfalling typhoon. Acta Meteor. Sinica, 63, 915–921, doi: 10.3321/j.issn:0577-6619.2005.06.008. (in Chinese)Google Scholar
  34. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, London, 670 ppCrossRefGoogle Scholar
  35. van den Berg, G. P., 2008: Wind turbine power and sound in relation to atmospheric stability. Wind Energy, 11, 151–169, doi: 10.1002/we.240.CrossRefGoogle Scholar
  36. Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512–526, doi: 10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.CrossRefGoogle Scholar
  37. von Kármán, T., 1948: Progress in the statistical theory of turbulence. Proc. Natl. Acad. Sci. USA, 34, 530–539, doi: 10.1073/pnas.34.11.530.CrossRefGoogle Scholar
  38. Xue, N. X., 2008: Application of MATLAB in Digital Signal Processing. 2nd Ed., Tsinghua University Press, Beijing, 285–287. (in Chinese)Google Scholar
  39. Zhang, S. Y., and F. Hu, 2017: A study on effects of boundary layer meteorology to wind turbines’ power performance. Renewable Energy Resources, 35, 427–436, doi: 10.13941/j.cnki.21-1469/tk.2017.03.016. (in Chinese)Google Scholar
  40. Zoumakis, N. M., 1993: The dependence of the power-law exponent on surface roughness and stability in a neutrally and stably stratified surface boundary layer. Atmosfera, 6, 79–83.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.Nanjing University of Information Science & TechnologyNanjingChina
  2. 2.Chinese Academy of Meteorological SciencesBeijingChina
  3. 3.National Climate CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations