Skip to main content
Log in

An Operational Precipitable Water Vapor Retrieval Algorithm for Fengyun-2F/VLSSR Using a Modified Three-Band Physical Split-Window Method

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The Visible and Infrared Spin-Scan Radiometer (VISSR) onboard the Fengyun-2 (FY-2) satellite can provide valuable thermal infrared observations to help create a precipitable water vapor (PWV) product with high spatial and temporal resolutions. The current FY-2/VISSR PWV product in operation is produced by using a traditional two-band physical split-window (PSW) method, which produces low quality results under dry atmospheric conditions. Based on the sensitivity characteristics of FY-2F/VISSR water vapor channel and two split-window channels to atmospheric water vapor, this study developed a new, robust operational PWV retrieval algorithm for FY-2F to improve the operational precision of the current PWV product. The algorithm uses a modified three-band PSW method, which adds a scale for the water vapor channel in the improved three-band PSW method. Integrated PWV products from the radiosonde data in 2016 are used here to validate the precision of the PWV retrieved by the modified three-band and traditional two-band PSW methods. The mean bias, root mean square error (RMSE), and correlation coefficient of the PWV retrieved by the modified three-band PSW method are 0.28 mm, 4.53 mm, and 0.969, respectively. The accuracy is much better than the PWV retrieved by the two-band method, whose mean bias, RMSE, and correlation coefficient are 12.67 mm, 29.35 mm, and 0.23. Especially, in mid- or high-latitude regions, the RMSE of the PWV is improved from 10 to 2 mm by changing the inversion in the two-band method to the modified three-band PSW method. Furthermore, the modified three-band PSW results show a better consistency with the radiosonde PWV at any zonal belt and season than the two-band PSW results. This new algorithm could significantly improve the quality of the current FY-2F/VISSR PWV product, especially at sites where the actual PWV are lower than 15 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berk, A., G. P. Anderson, P. K. Acharya, et al., 1999: Modtran4 User’s Manual. Air Force Research Laboratory, Space Vehicles Directorate, AIR FORCE MATERIEL COM-MAND, Hanscom AFB, MA 01731-3010, 99 pp.

    Google Scholar 

  • Chang, F., 2015: Comparison of T639 numerical forecast and actual sounding data. Mod. Agric. Sci. Technol., 2, 252–254, 257. (in Chinese)

    Google Scholar 

  • Coret, L., X. Briottet, Y. H. Kerr, et al., 2004: Simulation study of view angle effects on thermal infrared measurements over heterogeneous surfaces. IEEE Trans. Geosci. Remote Sens., 42, 664–672, doi: 10.1109/tgrs.2003.819443.

    Article  Google Scholar 

  • Czajkowski, K. P., S. N. Goward, D. Shirey, et al., 2002: Thermal remote sensing of near-surface water vapor. Remote Sens. Environ., 79, 253–265, doi: 10.1016/S0034-4257(01)00277-2.

    Article  Google Scholar 

  • Dalu, G., 1986: Satellite remote sensing of atmospheric water vapour. Int. J. Remote Sens., 7, 1089–1097, doi: 10.1080/014311 68608948911.

    Article  Google Scholar 

  • Guillory, A.R., G. J. Jedlovec, and H. E. Fuelberg, 1993: A technique for deriving column-integrated water content using VAS split-window data. J. Appl. Meteor, 32, 1226–1241, doi: 10.1175/1520-0450(1993)032<1226:ATFDCI>2.0.CO;2.

    Article  Google Scholar 

  • Guo, Z., Y. H. Chen, M. M. Cheng, et al., 2014: Near-surface air temperature retrieval from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data. Int. J. Remote Sens., 35, 3892–3914, doi: 10.1080/01431161.2014.919674.

    Article  Google Scholar 

  • Haines, S.L., G. J. Jedlovec, and R. L. Suggs, 2004: The GOES Product Generation System. NASA/TM-2004-213286, NASA, Huntsville, Alabama, 64 pp.

    Google Scholar 

  • Hu, J.Y., S. H. Tang, H. L. Liu, et al., 2017: Production and validation of FY-3C VIRR total precipitable water products. J. Remote Sens., 21, 842–852, doi: 10.11834/jrs.20176350. (in Chinese)

    Google Scholar 

  • Hu, X., N. M. Lu, T. Niu, and P. Zhang, 2008: Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time forecast in Asia. Atmos. Chem. Phys., 8, 1649–1659, doi: 10.5194/acp-8-1649-2008.

    Article  Google Scholar 

  • Hu, X. Q., N. Xu, F. Z. Weng, et al., 2013: Long-term monitoring and correction of FY-2 infrared channel calibration using AIRS and IASI. IEEE Trans. Geosci. Remote Sens., 51, 5008–5018, doi: 10.1109/TGRS.2013.2275871.

    Article  Google Scholar 

  • Jedlovec, G.J., 1987: Determination of atmospheric moisture structure from high resolution MAMS radiance data. Ph.D. dissertation, University of Wisconsin, Madison, 187 pp

    Google Scholar 

  • Jedlovec, G.J., 1990: Precipitable water estimation from high-resolution split window radiance measurement. J. Appl. Meteor., 29, 863–877, doi: 10.1175/1520-0450(1990)029<0863:PWEFHR>2.0.CO;2.

    Article  Google Scholar 

  • Julien, Y., J. A. Sobrino, C. Mattar, et al., 2015: Near-real-time estimation of water vapor column from MSG-SEVIRI thermal infrared bands: Implications for land surface temperature retrieval. IEEE Trans. Geosci. Remote Sens., 53, 4231–4237, doi: 10.1109/tgrs.2015.2393378.

    Article  Google Scholar 

  • Kleespies, T.J., and L. M. McMillin, 1990: Retrieval of precipitable water from observations in the split window over varying surface temperatures. J. Appl. Meteor, 29, 851–862, doi: 10.1175/1520-0450(1990)029<0851:ROPWFO>2.0.CO;2.

    Article  Google Scholar 

  • Knabb, R.D., and H. E. Fuelberg, 1997: A comparison of the first-guess dependence of precipitable water estimates from three techniques using GOES data. J. Appl. Meteor, 36, 417–427, doi: 10.1175/1520-0450(1997)036s0417:ACOT-FG>2.0.CO;2.

    Article  Google Scholar 

  • Labbi, A., and A. Mokhnache, 2015: Estimating of total atmospheric water vapor content from MSG1-SEVIRI Observations. Atmos. Meas. Tech. Discuss., 8, 8903–8923, doi: 10.5194/amtd-8-8903-2015.

    Article  Google Scholar 

  • Liu, H.L., S. H. Tang, J. Y. Hu, et al., 2017: An improved physical split-window algorithm for precipitable water vapor retrieval exploiting the water vapor channel observations. Remote Sens. Environ., 194, 366–378, doi: 10.1016/j.rse.2017. 03.031.

    Article  Google Scholar 

  • Min, M., and Z. B. Zhang, 2014: On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing. J. Quant. Spectrosc. Radiat. Transfer, 142, 25–36, doi: 10.1016/j.jqsrt.2014.03.014.

    Article  Google Scholar 

  • Min, M., C. Q. Wu, C. Li, et al., 2017: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: FengYun-4 series. J. Meteor. Res., 31, 708–719, doi: 10.1007/sl3351-017-6161-z.

    Article  Google Scholar 

  • Min, W.B., B. Li, J. Peng, et al., 2015: Evaluation of total precipitable water derived from FY-2E satellite data over the southeast of Tibetan Plateau and its adjacent areas. Resour. Environ. Yangtze Basin, 24, 625–631. (in Chinese)

    Google Scholar 

  • Muller, B.M., and H. E. Fuelberg, 1990: A simulation and diagnostic study of water vapor image dry bands. Mon. Wea. Rev., 118, 705–722, doi: 10.1175/1520-0493(1990)118<0705: ASADSO>2.0.CO;2.

    Article  Google Scholar 

  • Ottle, C., S. Outalha, C. Francois, et al., 1997: Estimation of total atmospheric water vapor content from split-window radiance measurements. Remote Sens. Environ., 61, 410, doi: 10.1016/S0034-4257(97)00055-2.

    Article  Google Scholar 

  • Sassen, K., Z. E. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/CloudhAerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res. Atmos., 113, D00A12, doi: 10.1029/2008JD009972.

    Article  Google Scholar 

  • Saunders, R., 2002: RTTOV-7 Users Guide. Met Office, London, 21 pp. Available at https://nwpsaf.eu/oldsite/deliverables/rtm/rttov7_ug.pdf

    Google Scholar 

  • Seemann, S.W., J. Li, L. E. Gumley, et al., 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. Proceedings of SPIE 4895, Applications with Weather Satellites, SPIE, Hangzhou, China, 168–176, doi: 10.1117/12.466686.

    Google Scholar 

  • Shi, C.X., and Z. H. Xie, 2005: Operational method of total precipitable water retrieved from satellite multi-channels’ infrared data. Journal of Infrared and Millimeter Waves, 24, 304–308, doi: 10.3321/j.issn:1001-9014.2005.04.015. (in Chinese)

    Google Scholar 

  • Shi, F.L., J. Y. Xin, L. K. Yang, et al., 2018: The first validation of the precipitable water vapor of multisensor satellites over the typical regions in China. Remote Sens. Environ., 206, 107–122, doi: 10.1016/j.rse.2017.12.022.

    Article  Google Scholar 

  • Steranka, J., L. J. Allison, and V. V. Salomonson, 1973: Application of Nimbus 4 TEUR 6.7 urn observations to regional and global moisutre and wind field analyses. J. Appl. Meteor., 12, 386–395, doi: 10.1175/1520-0450(1973)012<0386:aontot> 2.0.co;2.

    Article  Google Scholar 

  • Suggs, R.J., G. J. Jedlovec, and A. R. Guillory, 1998: Retrieval of geophysical parameters from GOES: Evaluation of a split-window technique. J. Appl. Meteor, 37, 1205–1227, doi: 10.1175/1520-0450(1998)037<1205:ROGPFG>2.0.CO;2.

    Article  Google Scholar 

  • Sun, D.L., Y. Y. Yu, L. Fang, et al., 2013: Toward an operational land surface temperature algorithm for GOES. J. Appl. Meteor. Climatol, 52, 1974–1986, doi: 10.1175/JAMC-D-12-0132.1.

    Article  Google Scholar 

  • Tang, B.H., and Z.-L. Li, 2008: Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data. Remote Sens. Environ., 112, 3482–3492, doi: 10.1016/j.rse.2008. 04.004.

    Article  Google Scholar 

  • Trenberth, K.E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc, 90, 311–324, doi: 10.1175/2008BAMS2634.1.

    Article  Google Scholar 

  • Xu, J.M., W. J. Zhang, J. Yang, et al., 2008: Fengyun-2 Satellite Operational Products and Data Formats Practical Handbook. China Meteorological Press, Beijing, 67–71. (in Chinese)

    Google Scholar 

  • Zheng, J., C. X. Shi, Q. F. Lu, et al., 2010: Evaluation of total precipitable water over East Asia from FY-3AAVTRR infrared radiances. Atmos. Oceanic Sci. Lett, 3, 93–99, doi: 10.1080/16742834.2010.11446853.

    Article  Google Scholar 

  • Zhu, Y.J., W. B. Li, and Y. Chen, 1998: Study of total precipitable water by GMS-5. Quart. J. Appl. Meteor, 9, 8–14. (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the University of Wyoming for providing the radiosonde data. We also thank the anonymous reviewers for thoughtful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihao Tang.

Additional information

Supported by the National Key Research and Development Program of China ( 2016YFA0600101 and 2018YFA0605502), China Meteorological Administration Special Public Welfare Research Fund (GYHY201406001), and National Natural Science Foundation of China (41571348).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Tang, S., Liu, H. et al. An Operational Precipitable Water Vapor Retrieval Algorithm for Fengyun-2F/VLSSR Using a Modified Three-Band Physical Split-Window Method. J Meteorol Res 33, 276–288 (2019). https://doi.org/10.1007/s13351-019-8111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-019-8111-4

Key words

Navigation