Journal of Meteorological Research

, Volume 33, Issue 1, pp 126–137 | Cite as

Below-Cloud Aerosol Scavenging by Different-Intensity Rains in Beijing City

  • Tian Luan
  • Xueliang GuoEmail author
  • Tianhang Zhang
  • Lijun Guo
Regular Articles


Below-cloud aerosol scavenging process by precipitation is important for cleaning the polluted aerosols in the atmosphere, and is also a main process for acid rain formation. However, the related physical mechanism has not been well documented and clarified yet. In this paper, we investigated the below-cloud PM2.5 (particulate matter with aerodynamic diameter being 2.5 μm or less) scavenging by different-intensity rains under polluted conditions characterized by high PM2.5 concentrations, based on in-situ measurements from March 2014 to July 2016 in Beijing city. It was found that relatively more intense rainfall events were more efficient in removing the polluted aerosols in the atmosphere. The mean PM2.5 scavenging ratio and its standard deviation (SD) were 5.1% ± 25.7%, 38.5% ± 29.0%, and 50.6% ± 21.2% for light, moderate, and heavy rain events, respectively. We further found that the key impact factors on below-cloud PM2.5 scavenging ratio for light rain events were rain duration and wind speed rather than raindrop size distribution. However, the impacts of rain duration and wind speed on scavenging ratio were not important for moderate and heavy rain events. To our knowledge, this is the first statistical result about the effects of rain intensity, rain duration, and raindrop size distribution on below-cloud scavenging in China.

Key words

PM2.5 below-cloud scavenging rain intensity impact factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors highly appreciate the constructive comments from the Editor and two anonymous reviewers.


  1. American Meteorological Society, cited 2019: “Rain”. Glossary of Meteorology. Available online at
  2. Andronache, C., 2003: Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos. Chem. Phys., 3: 131–143, doi: 10.5194/acp-3-131-2003.CrossRefGoogle Scholar
  3. Andronache, C., 2004: Precipitation removal of ultrafine aerosol particles from the atmospheric boundary layer. J. Geophys. Res. Atmos., 109, D16, doi: 10.1029/2003jd004050.CrossRefGoogle Scholar
  4. Andronache, C., T. Grönholm, L. Laakso, et al., 2006: Scavenging of ultrafine particles by rainfall at a boreal site: Observations and model estimations. Atmos. Chem. Phys., 6: 4739–4754, doi: 10.5194/acp-6-4739-2006.CrossRefGoogle Scholar
  5. Ardon-Dryer, K., Y. W. Huang, and D. J. Cziczo, 2015: Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis. Atmos. Chem. Phys., 15: 9159–9171, doi: 10.5194/acp-15-9159-2015.CrossRefGoogle Scholar
  6. Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11: 1–35, doi: 10.1029/RG011i001p00001.CrossRefGoogle Scholar
  7. Bae, S. Y., C. H. Jung, and Y. P. Kim, 2006: Development and evaluation of an expression for polydisperse particle scavenging coefficient for the below-cloud scavenging as a function of rain intensity using the moment method. J. Aerosol Sci., 37: 1507–1519, doi: 10.1016/j.jaerosci.2006.02.003.CrossRefGoogle Scholar
  8. Barmpadimos, I., C. Hueglin, J. Keller, et al., 2011: Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008. Atmos. Chem. Phys., 11: 1813–1835, doi: 10.5194/acp-11-1813-2011.CrossRefGoogle Scholar
  9. Bloemink, H. I., and E. Lanzinger, 2005: Precipitation type from the Thies disdrometer. Technical Conference on Meteorological and Environmental Instruments and Methods of Observation. Bucharest, Romania: WMO, 1–7.Google Scholar
  10. Byrne, M. A., and S. G. Jennings, 1993: Scavenging of sub-micrometre aerosol particles by water drops. Atmos. Environ., 27: 2099–2105, doi: 10.1016/0960-1686(93)90039-2.CrossRefGoogle Scholar
  11. Cai, W. J., K. Li, H. Liao, et al., 2017: Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Climate Change, 7: 257–262, doi: 10.1038/nclimate3249.CrossRefGoogle Scholar
  12. Castro, A., E. Alonso-Blanco, M. González-Colino, et al., 2010: Aerosol size distribution in precipitation events in León, Spain. Atmos. Res., 96: 421–435, doi: 10.1016/j.atmosres. 2010.01.014.CrossRefGoogle Scholar
  13. Chate, D. M., 2011: Below-thunderstorm rain scavenging of urban aerosols in the health hazardous modes. Nat. Hazards, 56: 81–91, doi: 10.1007/s11069-010-9550-5.CrossRefGoogle Scholar
  14. Chate, D. M., and T. S. Pranesha, 2004: Field studies of scavenging of aerosols by rain events. J. Aerosol Sci., 35: 695–706, doi: 10.1016/j.jaerosci.2003.09.007.CrossRefGoogle Scholar
  15. Chate, D. M., P. Murugavel, K. Ali, et al., 2011: Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models. Atmos. Res., 99: 528–536, doi: 10.1016/j.atmosres. 2010.12.010.CrossRefGoogle Scholar
  16. Chen, B. J., J. Yang, and J. P. Pu, 2013: Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J. Meteor. Soc. Japan, 91: 215–227, doi: 10.2151/jmsj.2013-208.CrossRefGoogle Scholar
  17. Chen, B. J., J. Wang, and D. L. Gong, 2016: Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China. J. Appl. Meteor. Climatol., 55: 621–634, doi: 10.1175/jamc-d-15-0127.1.CrossRefGoogle Scholar
  18. Chen, B. J., Z. Q. Hu, L. P. Liu, et al., 2017: Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res. Atmos., 122: 11092–11106, doi: 10.1002/2017jd027233.CrossRefGoogle Scholar
  19. Chen, R. J., Z. H. Zhao, and H. D. Kan, 2013: Heavy smog and hospital visits in Beijing, China. Am. J. Resp. Crit. Care, 188: 1170–1171, doi: 10.1164/rccm.201304-0678LE.CrossRefGoogle Scholar
  20. Croft, B., U. Lohmann, R. V. Martin, et al., 2009: Aerosol sizedependent below-cloud scavenging by rain and snow in the ECHAM5-HAM. Atmos. Chem. Phys., 9: 4653–4675, doi: 10.5194/acp-9-4653-2009.CrossRefGoogle Scholar
  21. Davenport, H. M., and L. K. Peters, 1978: Field studies of atmospheric particulate concentration changes during precipitation. Atmos. Environ., 12: 997–1008, doi: 10.1016/0004-6981(78) 90344-X.CrossRefGoogle Scholar
  22. de Moraes Frasson, R. P., L. K. da Cunha, and W. F. Krajewski, 2011: Assessment of the Thies optical disdrometer performance. Atmos. Res., 101: 237–255, doi: 10.1016/j.atmosres.2011. 02.014.CrossRefGoogle Scholar
  23. Feng, H., 2007: A 3-mode parameterization of below-cloud scavenging of aerosols for use in atmospheric dispersion models. Atmos. Environ., 41: 6808–6822, doi: 10.1016/j.atmosenv. 2007.04.046.CrossRefGoogle Scholar
  24. Feng, X. Y., and S. G. Wang, 2012: Influence of different weather events on concentrations of particulate matter with different sizes in Lanzhou, China. J. Environ. Sci., 24: 665–674, doi: 10.1016/S1001-0742(11)60807-3.CrossRefGoogle Scholar
  25. Fernández-Raga, M., A. Castro, C. Palencia, et al., 2009: Rain events on 22 October 2006 in León (Spain): Drop size spectra. Atmos. Res., 93: 619–635, doi: 10.1016/j.atmosres. 2008.09.035.CrossRefGoogle Scholar
  26. Friedrich, K., S. Higgins, F. J. Masters, et al., 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Ocean. Technol., 30: 2063–2080, doi: 10.1175/jtech-d-12-00254.1.CrossRefGoogle Scholar
  27. Greenfield, S. M., 1957: Rain scavenging of radioactive particulate matter from the atmosphere. J. Meteor., 14: 115–125, doi: 10.1175/1520-0469(1957)014<0115:rsorpm>;2.CrossRefGoogle Scholar
  28. Guo, L. C., Y. H. Zhang, H. L. Lin, et al., 2016: The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut., 215: 195–202, doi: 10.1016/j.envpol.2016.05.003.CrossRefGoogle Scholar
  29. Guo, L. H., 2016: Haze and health. Natl. Sci. Rev., 3: 412–413, doi: 10.1093/nsr/nww071.Google Scholar
  30. Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015: On the variability of drop size distributions over areas. J. Atmos. Sci., 72: 1386–1397, doi: 10.1175/jas-d-14-0258.1.CrossRefGoogle Scholar
  31. Laakso, L., T. Grönholm, Ü. Rannik, et al., 2003: Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos. Environ., 37: 3605–3613, doi: 10.1016/S1352-2310(03)00326-1.CrossRefGoogle Scholar
  32. Ladino, L., O. Stetzer, B. Hattendorf, et al., 2011: Experimental study of collection efficiencies between submicron aerosols and cloud droplets. J. Atmos. Sci., 68: 1853–1864, doi: 10.1175/jas-d-11-012.1.CrossRefGoogle Scholar
  33. Lai, K.-Y., N. Dayan, and M. Kerker, 1978: Scavenging of aerosol particles by a falling water drop. J. Atmos. Sci., 35: 674–682, doi: 10.1175/1520-0469(1978)035<0674:soapba>;2.CrossRefGoogle Scholar
  34. Lemaitre, P., A. Querel, M. Monier, et al., 2017: Experimental evidence of the rear capture of aerosol particles by raindrops. Atmos. Chem. Phys., 17: 4159–4176, doi: 10.5194/acp-17-4159-2017.CrossRefGoogle Scholar
  35. Liao, H., W. Y. Chang, and Y. Yang, 2015: Climatic effects of air pollutants over China: A review. Adv. Atmos. Sci., 32: 115–139, doi: 10.1007/s00376-014-0013-x.CrossRefGoogle Scholar
  36. Luan, T., X. L. Guo, L. J. Guo, et al., 2018: Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmos. Chem. Phys., 18: 203–225, doi: 10.5194/acp-18-203-2018.CrossRefGoogle Scholar
  37. Maria, S. F., and L. M. Russell, 2005: Organic and inorganic aerosol below-cloud scavenging by suburban New Jersey precipitation. Environ. Sci. Technol., 39: 4793–4800, doi: 10.1021/es0491679.CrossRefGoogle Scholar
  38. Olszowski, T., 2016: Changes in PM10 concentration due to largescale rainfall. Arab. J. Geosci., 9: 160, doi: 10.1007/s12517-015-2163-2.CrossRefGoogle Scholar
  39. Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, Dordrecht, 720–730.Google Scholar
  40. Qian, Y., D. P. Kaiser, L. R. Leung, et al., 2006: More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys. Res. Lett., 33, L01812, doi: 10.1029/2005gl024586.Google Scholar
  41. Quérel, A., P. Lemaitre, M. Monier, et al., 2014a: An experiment to measure raindrop collection efficiencies: Influence of rear capture. Atmos. Meas. Tech., 7: 1321–1330, doi: 10.5194/amt-7-1321-2014.Google Scholar
  42. Quérel, A., M. Monier, A. I. Flossmann, et al., 2014b: The importance of new collection efficiency values including the effect of rear capture for the below-cloud scavenging of aerosol particles. Atmos. Res., 142: 57–66, doi: 10.1016/j.atmosres. 2013.06.008.Google Scholar
  43. Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley & Sons, Hoboken, NJ, 932 pp.Google Scholar
  44. Tie, X. X., D. Wu, and G. Brasseur, 2009: Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos. Environ., 43: 2375–2377, doi: 10.1016/j.atmosenv. 2009.01.036.CrossRefGoogle Scholar
  45. Tinsley, B. A., 2010: Electric charge modulation of aerosol scavenging in clouds: Rate coefficients with Monte Carlo simulation of diffusion. J. Geophys. Res. Atmos., 115, D23211, doi: 10.1029/2010jd014580.CrossRefGoogle Scholar
  46. Tinsley, B. A., R. P. Rohrbaugh, and M. Hei, 2001: Electroscavenging in clouds with broad droplet size distributions and weak electrification. Atmos. Res., 59-60, 115–135, doi: 10.1016/s0169-8095(01)00112-0.CrossRefGoogle Scholar
  47. Tinsley, B. A., L. M. Zhou, and A. Plemmons, 2006: Changes in scavenging of particles by droplets due to weak electrification in clouds. Atmos. Res., 79: 266–295, doi: 10.1016/j.atmosres. 2005.06.004.CrossRefGoogle Scholar
  48. Wang, P. K., and H. R. Pruppacher, 1977: An experimental determination of the efficiency with which aerosol particles are collected by water drops in subsaturated air. J. Atmos. Sci., 34: 1664–1669, doi: 10.1175/1520-0469(1977)034<1664:aedote>;2.CrossRefGoogle Scholar
  49. Wang, X., L. Zhang, and M. D. Moran, 2010: Uncertainty assessment of current size-resolved parameterizations for belowcloud particle scavenging by rain. Atmos. Chem. Phys., 10: 5685–5705, doi: 10.5194/acp-10-5685-2010.CrossRefGoogle Scholar
  50. Wang, X., L. Zhang, and M. D. Moran, 2011: On the discrepancies between theoretical and measured below-cloud particle scavenging coefficients for rain—a numerical investigation using a detailed one-dimensional cloud microphysics model. Atmos. Chem. Phys., 11: 11859–11866, doi: 10.5194/acp-11-11859-2011.CrossRefGoogle Scholar
  51. Xu, X. D., X. L. Guo, T. L. Zhao, et al., 2017: Are precipitation anomalies associated with aerosol variations over eastern China? Atmos. Chem. Phys., 17: 8011–8019, doi: 10.5194/acp-17-8011-2017.CrossRefGoogle Scholar
  52. Yang, Y., H. Liao, and S. J. Lou, 2016: Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. J. Geophys. Res. Atmos., 121: 13050–13065, doi: 10.1002/2016 JD025136.CrossRefGoogle Scholar
  53. Zhang, L. M., D. V. Michelangeli, and P. A. Taylor, 2004: Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. Atmos. Environ., 38: 4653–4665, doi: 10.1016/j.atmosenv.2004.05.042.CrossRefGoogle Scholar
  54. Zhang, L. M., D. V. Michelangeli, and P. A. Taylor, 2006: Influence of aerosol concentration on precipitation formation in low-level, warm stratiform clouds. J. Aerosol Sci., 37: 203–217, doi: 10.1016/j.jaerosci.2005.04.002.CrossRefGoogle Scholar
  55. Zhang, L. M., X. Wang, M. D. Moran, et al., 2013: Review and uncertainty assessment of size-resolved scavenging coefficient formulations for below-cloud snow scavenging of atmospheric aerosols. Atmos. Chem. Phys., 13: 10005–10025, doi: 10.5194/acp-13-10005-2013.CrossRefGoogle Scholar
  56. Zhang, Y. L., and F. Cao, 2015: Fine particulate matter (PM2.5) in China at a city level. Sci. Rep., 5: 14884, doi: 10.1038/srep 14884.CrossRefGoogle Scholar
  57. Zhao, S. P., Y. Yu, J. J. He, et al., 2015: Below-cloud scavenging of aerosol particles by precipitation in a typical valley city, northwestern China. Atmos. Environ., 102: 70–78, doi: 10.1016/j.atmosenv.2014.11.051.CrossRefGoogle Scholar
  58. Zikova, N., and V. Zdimal, 2016: Precipitation scavenging of aerosol particles at a rural site in the Czech Republic. Tellus B, 68: 27343, doi: 10.3402/tellusb.v68.27343.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tian Luan
    • 1
    • 2
  • Xueliang Guo
    • 1
    • 2
    • 3
    Email author
  • Tianhang Zhang
    • 4
  • Lijun Guo
    • 1
    • 2
  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological Sciences, China Meteorological AdministrationBeijingChina
  2. 2.Key Laboratory for Cloud Physics, Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina
  3. 3.Collaborative Innovation Center for Meteorological Disasters Forecast, Early Warning, and AssessmentNanjing University of Information Science & TechnologyNanjingChina
  4. 4.National Meteorological Center, China Meteorological AdministrationBeijingChina

Personalised recommendations