Journal of Meteorological Research

, Volume 32, Issue 6, pp 1002–1010 | Cite as

Drivers of the Severity of the Extreme Hot Summer of 2015 in Western China

  • Wei ChenEmail author
  • Buwen Dong
Regular Article


Western China experienced an extreme hot summer in 2015, breaking a number of temperature records. The summer mean surface air temperature (SAT) anomaly was twice the interannual variability. The hottest daytime temperature (TXx) and warmest night-time temperature (TNx) were the highest in China since 1964. This extreme hot summer occurred in the context of steadily increasing temperatures in recent decades. We carried out a set of experiments to evaluate the extent to which the changes in sea surface temperature (SST)/sea ice extent (SIE) and anthropogenic forcing drove the severity of the extreme summer of 2015 in western China. Our results indicate that about 65%–72% of the observed changes in the seasonal mean SAT and the daily maximum (Tmax) and daily minimum (Tmin) temperatures over western China resulted from changes in boundary forcings, including the SST/SIE and anthropogenic forcing. For the relative role of individual forcing, the direct impact of changes in anthropogenic forcing explain about 42% of the SAT warming and 60% (40%) of the increase in TNx and Tmin (TXx and Tmax) in the model response. The changes in SST/SIE contributed to the remaining surface warming and the increase in hot extremes, which are mainly the result of changes in the SST over the Pacific Ocean, where a super El Niño event occurred. Our study indicates a prominent role for the direct impact of anthropogenic forcing in the severity of the extreme hot summer in western China in 2015, although the changes in SST/SIE, as well as the internal variability of the atmosphere, also made a contribution.

Key words

severity of temperature extremes summer 2015 western China anthropogenic forcing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13351_2018_8004_MOESM1_ESM.pdf (1.6 mb)
Drivers of the Severity of the Extreme Hot Summer of 2015 in Western China


  1. Bindoff, N. L., P. A. Stott, K. M. AchutaRao, et al., 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F., et al., Eds., Cambridge University Press, Cambridge, UK, 867–952.Google Scholar
  2. Cattiaux, J., H. Douville, R. Schoetter, et al., 2015: Projected increase in diurnal and interdiurnal variations of European summer temperatures. Geophys. Res. Lett., 42, 899–907, doi: 10.1002/2014GL062531.CrossRefGoogle Scholar
  3. Christidis, N., P. A. Stott, and S. J. Brown, 2011: The role of human activity in the recent warming of extremely warm daytime temperatures. J. Climate, 24, 1922–1930, doi: 10.1175/2011JCLI4150.1.CrossRefGoogle Scholar
  4. CMA, 2016: China Climate Bulletin 2015. China Meteorological Administration, Beijing, 50 pp. (in Chinese)Google Scholar
  5. Díaz, J., R. García, F. V. de Castro, et al., 2002: Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997. Int. J. Biometeorol., 46, 145–149, doi: 10.1007/s00484-002-0129-z.CrossRefGoogle Scholar
  6. Dole, R., M. Hoerling, J. Perlwitz, et al., 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, doi: 10.1029/2010GL046582.CrossRefGoogle Scholar
  7. Dong, B. W., R. Sutton, L. Shaffrey, et al., 2016a: The 2015 European heat wave. Bull. Amer. Meteor. Soc., 97, S57–S62, doi: 10.1175/BAMS-D-16-0140.1.CrossRefGoogle Scholar
  8. Dong, B. W., R. T. Sutton, W. Chen, et al., 2016b: Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes. Adv. Atmos. Sci., 33, 1005–1023, doi: 10.1007/s00376-016-5247-3.CrossRefGoogle Scholar
  9. Hewitt, H. T., D. Copsey, I. D. Culverwell, et al., 2011: Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geoscientific Model Development, 4, 223–253, doi: 10.5194/gmd-4-223-2011.CrossRefGoogle Scholar
  10. Kilbourne, E. M., 1997: Heat waves and hot environments. The Public Health Consequences of Disasters, Noji, E. K., Ed., Oxford University Press, New York, 245–269.Google Scholar
  11. King, A. D., G. J. van Oldenborgh, D. J. Karoly, et al., 2015: Attribution of the record high Central England temperature of 2014 to anthropogenic influences. Environ. Res. Lett., 10, 054002, doi: 10.1088/1748-9326/10/5/054002.CrossRefGoogle Scholar
  12. King, A. D., M. T. Black, S. K. Min, et al., 2016: Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett., 43, 3438–3443, doi: 10.1002/2015GL067448.CrossRefGoogle Scholar
  13. Kosaka, Y., H. Nakamura, M. Watanabe, et al., 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561–580, doi: 10.2151/jmsj.87.561.CrossRefGoogle Scholar
  14. Kyselý, J., and E. Plavcová, 2012: Biases in the diurnal temperature range in Central Europe in an ensemble of regional climate models and their possible causes. Climate Dyn., 39, 1275–1286, doi: 10.1007/s00382-011-1200-4.CrossRefGoogle Scholar
  15. Lamarque, J. F., T. C. Bond, V. Eyring, et al., 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 7017–7039, doi: 10.5194/acp-10-7017-2010.CrossRefGoogle Scholar
  16. Lamarque, J. F., G. P. Kyle, M. Meinshausen, et al., 2011: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change, 109, 191–212, doi: 10.1007/s10584-011-0155-0.CrossRefGoogle Scholar
  17. Ma, S. M., T. J. Zhou, D. A. Stone, et al., 2017: Attribution of the July–August 2013 heat event in central and eastern China to anthropogenic greenhouse gas emissions. Environ. Res. Lett., 12, 054020, doi: 10.1088/1748-9326/aa69d2.CrossRefGoogle Scholar
  18. Miao, C., Q. H. Sun, D. X. Kong, et al, 2016: Record-breaking heat in Northwest China in July 2015: Analysis of the severity and underlying causes. Bull. Amer. Meteor. Soc., 97, S97–S101, doi: 10.1175/BAMS-D-16-0142.1.CrossRefGoogle Scholar
  19. Otto, F. E. L., N. Massey, G. J. van Oldenborgh, et al., 2012: Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett., 39, L04702, doi: 10.1029/2011 GL050422.CrossRefGoogle Scholar
  20. Rahmstorf, S., and D. Coumou, 2011: Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA, 108, 17905–17909, doi: 10.1073/pnas.1101766108.CrossRefGoogle Scholar
  21. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global ana-lyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  22. Sato, N., and M. Takahashi, 2003: Formation mechanism of vorticity anomalies on the subtropical jet in the midsummer Northern Hemisphere. Theoretical and Applied Mechanics Japan, 52, 109–115, doi: 10.11345/nctam.52.109.Google Scholar
  23. Sato, N., and M. Takahashi, 2006: Dynamical processes related to the appearance of quasi-stationary waves on the subtropical jet in the midsummer Northern Hemisphere. J. Climate, 19, 1531–1544, doi: 10.1175/JCLI3697.1.CrossRefGoogle Scholar
  24. Seneviratne, S. I., N. Nicholls, D. Easterling, et al., 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the IPCC, Field, C. B., et al., Eds., Cambridge University Press, Cambridge, UK, 109–230.Google Scholar
  25. Stott, P., 2016: How climate change affects extreme weather events. Science, 352, 1517–1518, doi: 10.1126/science.aaf7271.CrossRefGoogle Scholar
  26. Stott, P. A., M. Allen, N. Christidis, et al., 2013: Attribution of weather and climate-related events. Climate Science for Serving Society: Research, Modeling and Prediction Priorities, Asrar, G. R., and J. W. Hurrell, Eds., Springer, Dordrecht, doi: 10.1007/978-94-007-6692-1_12.Google Scholar
  27. Sun, Y., L. C. Song, H. Yin, et al., 2016: Human Influence on the 2015 extreme high temperature events in western China. Bull. Amer. Meteor. Soc., 97, S102–S106, doi: 10.1175/BAMS-D-16-0158.1.CrossRefGoogle Scholar
  28. WMO, 2015: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2014. WMO Greenhouse Gas Bull., No. 11, 4 pp. [Available online at http://www.].Google Scholar
  29. WMO, 2015: WMO-Press Conference: Status of the Global Climate in 2015. Geneva, 25 November 2015. [Available online at].Google Scholar
  30. Zhou, B. T., Y. Xu, J. Wu, et al., 2016: Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol., 36, 1051–1066, doi: 10.1002/joc.4400.CrossRefGoogle Scholar
  31. Zwiers, F. W., X. B. Zhang, and Y. Feng, 2011: Anthropogenic influence on long return period daily temperature extremes at regional scales. J. Climate, 24, 881–892, doi: 10.1175/2010JCLI 3908.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.National Centre for Atmospheric Science, Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations