Skip to main content
Log in

The Observation of Ice-Nucleating Particles Active at Temperatures above–15°C and Its Implication on Ice Formation in Clouds

  • Special Collection on Aerosol-Cloud-Radiation Interactions
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

A series of measurements of ice-nucleating particles (INPs) were performed at two sites in Beijing. At the Beijing Meteorological Service (BMS) site, which was an urban site, no INPs were found to be active above–15°C. However, at the Yanjiaping (YJP) site, which was a rural site, the concentration of INPs active at temperatures above–15°C was found to be as high as 1.73 g–1. Two parameterizations were constructed by respectively fitting the data obtained at BMS site and YJP site. The two parameterizations, as well as another parameterization from the literature, were implemented into a parcel model to investigate the effect of INPs active above–15°C on phase partitioning in mixed-phase clouds. At a vertical velocity of 0.01 m s–1, which is typical for stratiform clouds associated with frontal systems, the INPs active above–15°C nucleate ice crystals at low levels. The growth of these ice crystals remarkably reduces both the maximum liquid water mixing ratio and the altitude where the maximum liquid water mixing ratio is reached. When the vertical velocity of the parcel is increased to 0.1 m s–1 or an even higher value, the evolution of liquid water mixing ratio is not controlled by the INPs active above–15°C but those active below–15°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, J. D., B. J. Murray, M. T. Woodhouse, et al.,2013: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355–358, doi: 10.1038/nature12278.

    Article  Google Scholar 

  • Bigg, E. K., 1957: A new technique for counting ice-forming nuclei in aerosols. Tellus, 9, 394–400, doi: 10.1111/j.2153-3490. 1957.tb01895.x.

    Article  Google Scholar 

  • Burrows, S. M., C. Hoose, U. Pöschl, et al.,2013: Ice nuclei in marine air: Biogenic particles or dust? Atmos. Chem. Phys., 13, 245–267, doi: 10.5194/acp-13-245-2013.

    Google Scholar 

  • Chen, J., Z. J. Wu, S. Augustin-Bauditz, et al.,2018: Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China. Atmos. Chem. Phys., 18, 3523–3539, doi: 10.5194/acp-18-3523-2018.

    Article  Google Scholar 

  • DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor., 29, 1072–1079, doi: 10.1175/1520-0450(1990)029<1072:AESOIN>2.0.CO;2.

    Article  Google Scholar 

  • DeMott, P. J., A. J. Prenni, X. Liu, et al.,2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11217–11222, doi: 10.1073/pnas.0910818107.

    Article  Google Scholar 

  • Durran, D. R., and L. W. Snellman, 1987: The diagnosis of synoptic-scale vertical motion in an operational environment. Wea. Forecasting, 2, 17–31, doi: 10.1175/1520-0434(1987)002 <0017:TDOSSV>2.0.CO;2.

    Article  Google Scholar 

  • Flatau, P. J., R. L. Walko, and W. R. Cotton, 1992: Polynomial fits to saturation vapor pressure. J. Appl. Meteor., 31, 1507–1513, doi: 10.1175/1520-0450(1992)031<1507:PFTSVP>2.0.CO;2.

    Article  Google Scholar 

  • Fu, S. Z., and H. W. Xue, 2017: The effect of ice nuclei efficiency on arctic mixed-phase clouds from large-eddy simulations. J. Atmos. Sci., 74, 3901–3913, doi: 10.1175/JAS-D-17-0112.1.

    Article  Google Scholar 

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26–28, doi: 10.1038/249026a0.

    Article  Google Scholar 

  • Heymsfield, A. J., and S. C. Mossop, 1984: Temperature dependence of secondary ice crystal production during soft hail growth by riming. Quart. J. Roy. Meteor. Soc., 110, 765–770, doi: 10.1002/qj.49711046512.

    Article  Google Scholar 

  • Hobbs, P. V., and A. J. Alkezweeny, 1968: The fragmentation of freezing water droplets in free fall. J. Atmos. Sci., 25, 881–888, doi: 10.1175/1520-0469(1968)025<0881:TFOFWD >2.0.CO;2.

    Article  Google Scholar 

  • Hoose, C., J. E. Kristjánsson, J.-P. Chen, et al.,2010: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J. Atmos. Sci., 67, 2483–2503, doi: 10.1175/2010JAS3425.1.

    Article  Google Scholar 

  • Huffman, J. A., A. J. Prenni, P. J. DeMott, et al.,2013: High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys., 13, 6151–6164, doi: 10.5194/acp-13-6151-2013.

    Article  Google Scholar 

  • Jiang, H., Y. Yin, H. Su, et al.,2015: The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow Mountains) in Southeast China using a newly built static vacuum water vapor diffusion chamber. Atmos. Res., 153, 200–208, doi: 10.1016/j.atmosres.2014.08.015.

    Article  Google Scholar 

  • Jiang, H., Y. Yin, X. Wang, et al.,2016: The measurement and parameterization of ice nucleating particles in different backgrounds of China. Atmos. Res., 181, 72–80, doi: 10.1016/j.atmosres. 2016.06.013.

    Article  Google Scholar 

  • Joly, M., P. Amato, L. Deguillaume, et al.,2014: Quantification of ice nuclei active at near 0°C temperatures in low-altitude clouds at the Puy de Dôme atmospheric station. Atmos. Chem. Phys., 14, 8185–8195, doi: 10.5194/acp-14-8185-2014.

    Article  Google Scholar 

  • Kikuro, T., S. Masaki, W. Kenji, et al.,2015: An example of canal formation in a thick cloud induced by massive seeding using liquid carbon dioxide. J. Meteor. Res., 29, 682–690, doi: 10.1007/s13351-015-5005-y.

    Article  Google Scholar 

  • Korolev, A., and G. Isaac, 2003: Phase transformation of mixedphase clouds. Quart. J. Roy. Meteor. Soc., 129, 19–38, doi: 10.1256/qj.01.203.

    Article  Google Scholar 

  • Korolev, A., and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 66–86, doi: 10.1175/2007JAS2355.1.

    Article  Google Scholar 

  • Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, Cambridge, United Kingdom, 584 pp.

    Book  Google Scholar 

  • Li, Z., H. W. Xue, and F. Yang, 2013: A modeling study of ice formation affected by aerosols. J. Geophys. Res. Atmos., 118, 11213–11227, doi: 10.1002/jgrd.50861.

    Article  Google Scholar 

  • Lohmann, U., 2002: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29, 11-1–11-4, doi: 10.10 29/2001GL014357.

    Article  Google Scholar 

  • Ma, X. C., K. Bi, Y. B. Chen, et al.,2017: Characteristics of winter clouds and precipitation over the mountains of northern Beijing. Adv. Meteor., 2017, 3536107, doi: 10.1155/2017/3536107.

    Google Scholar 

  • Masaki, S., T. Kikuro, and N. Koji, 2016: Model analysis of radar echo split observed in an artificial cloud seeding experiment. J. Meteor. Res., 30, 386–400, doi: 10.1007/s13351-016-5053-y.

    Article  Google Scholar 

  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708–721, doi: 10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    Article  Google Scholar 

  • Mossop, S. C., and J. Hallett, 1974: Ice crystal concentration in cumulus clouds: Influence of the drop spectrum. Science, 186, 632–634, doi: 10.1126/science.186.4164.632.

    Article  Google Scholar 

  • Murray, B. J., S. L. Broadley, T. W. Wilson, et al.,2011: Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys., 11, 4191–4207, doi: 10.5194/acp-11-4191-2011.

    Article  Google Scholar 

  • O’Sullivan, D., B. J. Murray, T. L. Malkin, et al.,2014: Ice nucleation by fertile soil dusts: Relative importance of mineral and biogenic components. Atmos. Chem. Phys., 14, 1853–1867, doi: 10.5194/acp-14-1853-2014.

    Article  Google Scholar 

  • Ovchinnikov, M., A. S. Ackerman, A. Avramov, et al.,2014: Intercomparison of large-eddy simulations of Arctic mixedphase clouds: Importance of ice size distribution assumptions. J. Adv. Model. Earth Syst., 6, 223–248, doi: 10.1002/2013MS000282.

    Article  Google Scholar 

  • Prenni, A. J., P. J. DeMott, D. C. Rogers, et al.,2009: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, 61, 436–448, doi: 10.1111/j.1600-0889.2009.00415.x.

    Article  Google Scholar 

  • Savre, J., and A. M. L. Ekman, 2015: Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation. J. Geophys. Res. Atmos., 120, 7699–7725, doi: 10.1002/2014JD023006.

    Article  Google Scholar 

  • Schnell, R. C., and G. Vali, 1976: Biogenic ice nuclei: Part I. Terrestrial and marine sources. J. Atmos. Sci., 33, 1554–1564, doi: 10.1175/1520-0469(1976)033<1554:BINPIT>2.0.CO;2.

    Article  Google Scholar 

  • Sesartic, A., U. Lohmann, and T. Storelvmo, 2013: Modelling the impact of fungal spore ice nuclei on clouds and precipitation. Environ. Res. Lett., 8, 014029, doi: 10.1088/1748-9326/8/1/014029.

    Article  Google Scholar 

  • Solomon, A., G. Feingold, and M. D. Shupe, 2015: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus. Atmos. Chem. Phys., 15, 10,631–10,643, doi: 10.5194/acp-15-10631-2015.

    Article  Google Scholar 

  • Sulia, K. J., and J. Y. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res. Atmos., 116, D21309, doi: 10.1029/2011JD016298.

    Article  Google Scholar 

  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 3636–3658, doi: 10.1175/JAS-D-13-0305.1.

    Article  Google Scholar 

  • Vali, G., M. Christensen, R. W. Fresh, et al.,1976: Biogenic ice nuclei. Part II: Bacterial sources. J. Atmos. Sci., 33, 1565–1570, doi: 10.1175/1520-0469(1976)033<1565:BINPIB>2.0. CO;2.

    Google Scholar 

  • Vali, G., P. J. DeMott, O. Möhler, et al.,2015: Technical Note: A proposal for ice nucleation terminology. Atmos. Chem. Phys., 15, 10263–10270, doi: 10.5194/acp-15-10263-2015.

    Article  Google Scholar 

  • Wang, D. H., J. F. Yin, and G. Q. Zhai, 2015: In-situ measurements of cloud–precipitation microphysics in the East Asian monsoon region since 1960. J. Meteor. Res., 29, 155–179, doi: 10.1007/s13351-015-3235-7.

    Article  Google Scholar 

  • Xue, H. W., and G. Feingold, 2004: A modeling study of the effect of nitric acid on cloud properties. J. Geophys. Res. Atmos., 109, D18204, doi: 10.1029/2004JD004750.

    Article  Google Scholar 

  • Yang, S. Z., X. F. Lou, G. Huang, et al.,2007: A 15 L mixing cloud chamber for testing ice nuclei. J. Appl. Meteor. Sci., 18, 716–721. (in Chinese)

    Google Scholar 

  • Young, K. C., 1974: The role of contact nucleation in ice phase initiation in clouds. J. Atmos. Sci., 31, 768–776, doi: 10.1175/1520-0469(1974)031<0768:TROCNI>2.0.CO;2.

    Article  Google Scholar 

  • Zeng, X. P., W.-K. Tao, M. H. Zhang, et al.,2009: An indirect effect of ice nuclei on atmospheric radiation. J. Atmos. Sci., 66, 41–61, doi: 10.1175/2008JAS2778.1.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Deping Ding for initiating the collaboration between Beijing Weather Modification Office and Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizuo Fu.

Additional information

Supported by the National Natural Science Foundation of China (41775138 and 41330421), Natural Science Foundation of Beijing (8172023), Beijing Municipal Science and Technology Commission (D171100000717001), and Science and Technology Project of Beijing Meteorological Service (BMBKJ201701007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, K., Ma, X., Chen, Y. et al. The Observation of Ice-Nucleating Particles Active at Temperatures above–15°C and Its Implication on Ice Formation in Clouds. J Meteorol Res 32, 734–743 (2018). https://doi.org/10.1007/s13351-018-7181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7181-z

Key words

Navigation