Skip to main content
Log in

Influences of the Internal Mixing of Anthropogenic Aerosols on Global Aridity Change

  • Special Collection on Aerosol-Cloud-Radiation Interactions
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Influences of the mixing treatments of anthropogenic aerosols on their effective radiative forcing (ERF) and global aridity are evaluated by using the BCC_AGCM2.0_CUACE/Aero, an aerosol–climate online coupled model. Simulations show that the negative ERF due to external mixing (EM, a scheme in which all aerosol particles are treated as independent spheres formed by single substance) aerosols is largely reduced by the partial internal mixing (PIM, a scheme in which some of the aerosol particles are formed by one absorptive and one scattering substance) method. Compared to EM, PIM aerosols have much stronger absorptive ability and generally weaker hygroscopicity, which would lead to changes in radiative forcing, hence to climate. For the global mean values, the ERFs due to anthropogenic aerosols since the pre-industrial are–1.02 and–1.68 W m–2 for PIM and EM schemes, respectively. The variables related to aridity such as global mean temperature, net radiation flux at the surface, and the potential evaporation capacity are all decreased by 2.18/1.61 K, 5.06/3.90 W m–2, and 0.21/0.14 mm day–1 since 1850 for EM and PIM schemes, respectively. According to the changes in aridity index, the anthropogenic aerosols have caused general humidification over central Asia, South America, Africa, and Australia, but great aridification over eastern China and the Tibetan Plateau since the pre-industrial in both mixing schemes. However, the aridification is considerably alleviated in China, but intensified in the Arabian Peninsula and East Africa in the PIM scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, S. J., J. M. Haywood, E. J. Highwood, et al.,2003: Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa. Geophys. Res. Lett., 30, 1783, doi: 10.1029/2003GL017342.

    Article  Google Scholar 

  • Andreae, M. O., R. J. Charlson, F. Bruynseels, et al.,1986: Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols. Science, 232, 1620–1623, doi: 10.1126/science. 232.4758.1620.

    Article  Google Scholar 

  • Bauer, S. E., S. Menon, D. Koch, et al.,2010: A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects. Atmos. Chem. Phys., 10, 7439–7456, doi: 10.5194/acp-10-7439-2010.

    Article  Google Scholar 

  • Bohren, C. F., and D. R. Huffman, 1998: Absorption and Scattering of Light by Small Particles. Wiley-VCH, New York, 530 pp.

    Book  Google Scholar 

  • Bond, T. C., D. G. Streets, K. F. Yarber, et al.,2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos., 109, D14203, doi: 10.1029/2003JD003697.

    Article  Google Scholar 

  • Bond, T. C., E. Bhardwaj, R. Dong, et al.,2007: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem. Cycles, 21, GB2018, doi: 10.1029/2006GB002840.

    Article  Google Scholar 

  • Boucher, O., D. Randall, P. Artaxo, et al.,2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge and New York, 87 pp.

    Google Scholar 

  • Chung, S. H., and J. H. Seinfeld, 2002: Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res. Atmos., 107, 4407, doi: 10.1029/2001JD001397.

    Article  Google Scholar 

  • Dai, A. G., 2011: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. Atmos., 116, D12115, doi: 10.1029/2010JD 015541.

    Article  Google Scholar 

  • Deboudt, K., P. Flament, M. Choël, et al.,2010: Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis. J. Geophys. Res. Atmos., 115, D24207, doi: 10.1029/2010JD 013921.

    Article  Google Scholar 

  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmos. Chem. Phys. Discuss., 13, 14,637–14,665, doi: 10.5194/acpd-13-14637-2013.

    Google Scholar 

  • Guan, X. D., J. P. Huang, Y. T. Zhang, et al.,2016: The relationship between anthropogenic dust and population over global semi-arid regions. Atmos. Chem. Phys., 16, 5159–5169, doi: 10.5194/acp-16-5159-2016.

    Article  Google Scholar 

  • Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513–543, doi: 10.1029/1999RG 000078.

    Article  Google Scholar 

  • Huang, J. P., J. J. Liu, B. Chen, et al.,2015: Detection of anthropogenic dust using CALIPSO lidar measurements. Atmos. Chem. Phys., 15, 11653–11665, doi: 10.5194/acp-15-11653-2015.

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi: 10.1017/CBO9781107415324.

    Google Scholar 

  • Jacobson, M. Z., 2000: A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophys. Res. Lett., 27, 217–220, doi: 10.1029/1999GL 010968.

    Article  Google Scholar 

  • Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697, doi: 10.1038/35055518.

    Article  Google Scholar 

  • Jing, X. W., and H. Zhang, 2012: Application and evaluation of McICA cloud–radiation framework in the AGCM of the National Climate Center. Chinese J. Atmos. Sci., 36, 945–958, doi: 10.3878/j.issn.1006-9895.2012.11155. (in Chinese)

    Google Scholar 

  • Kirkevåg, A., T. Iversen, Ø. Seland, et al.,2008: Aerosol–cloud–climate interactions in the climate model CAM-Oslo. Tellus A Dyn. Meteor. Oceanogr., 60, 492–512, doi: 10.1111/j.1600-0870.2008.00313.x.

    Article  Google Scholar 

  • Kottek, M., J. Grieser, C. Beck, et al.,2006: World map of the Koppen–Geiger climate classification updated. Meteor. Z., 15, 259–263, doi: 10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  • Lesins, G., P. Chylek, and U. Lohmann, 2002: A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res. Atmos., 107, 4094, doi: 10.1029/2001JD000973.

    Article  Google Scholar 

  • Li, H., C. Liu, L. Bi, et al.,2010: Numerical accuracy of “equivalent” spherical approximations for computing ensemble-averaged scattering properties of fractal soot aggregates. J. Quant. Spectrosc. Radiat. Transf., 111, 2127–2132, doi: 10.1016/j. jqsrt.2010.05.009.

    Article  Google Scholar 

  • Martins, J. V., P. Artaxo, C. Liousse, et al.,1998: Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. J. Geophys. Res. Atmos., 103, 32041–32050, doi: 10.1029/98JD02593.

    Article  Google Scholar 

  • McMeeking, G. R., N. Good, M. D. Petters, et al.,2011: Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere. Atmos. Chem. Phys., 11, 5099–5112, doi: 10.5194/acp-11-5099-2011.

    Article  Google Scholar 

  • Myhre, G., D. Shindell, F. M. Bréon, et al.,2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, 82 pp.

    Google Scholar 

  • Nightingale, P. D., G. Malin, C. S. Law, et al.,2000: In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles, 14, 373–387, doi: 10.1029/1999GB900091.

    Article  Google Scholar 

  • Ohara, T., H. Akimoto, J. Kurokawa, et al.,2007: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys., 7, 4419–4444, doi: 10. 5194/acp-7-4419-2007.

    Article  Google Scholar 

  • Okada, K., 1983: Nature of individual hygroscopic particles in the urban atmosphere. J. Meteor. Soc. Japan, 61, 727–736, doi: 10.2151/jmsj1965.61.5_727.

    Article  Google Scholar 

  • Olivier, J. G. J., J. J. M. Berdowski, J. A. H. W. Peters, et al.,2001: Applications of EDGAR. Including a Description of EDGAR 3.0: Reference Database with Trend Data for 1970–1995. RIVM Report 773301001/NRP Report 410200051, Bilthoven, the Netherlands, RIVM.

    Google Scholar 

  • Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 1961–1971, doi: 10.5194/acp-7-1961-2007.

    Article  Google Scholar 

  • Pósfai, M., R. Simonics, J. Li, et al.,2003: Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. J. Geophys. Res. Atmos., 108, 8483, doi: 10.1029/2002JD 002291.

    Google Scholar 

  • Rothma, L. S., D. Jacquemart, A. Barbe, et al.,2005: The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 96, 139–204, doi: 10.1016/j.jqsrt.2004. 10.008.

    Article  Google Scholar 

  • Sato, M., J. Hansen, D. Koch, et al.,2003: Global atmospheric black carbon inferred from AERONET. Proc. Natl. Acad. Sci. USA, 100, 6319–6324, doi: 10.1073/pnas.0731897100.

    Article  Google Scholar 

  • van der Werf, G. R., J. T. Randerson, G. J. Collatz, et al.,2004: Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science, 303, 73–76, doi: 10.1126/science.1090753.

    Article  Google Scholar 

  • Wang, Z. L., H. Zhang, and P. Lu., 2014: Improvement of cloud microphysics in the aerosol–climate model BCC_AGCM2.0.1_CUACE/Aero, evaluation against observations, and updated aerosol indirect effect. J. Geophys. Res. Atmos., 119, 8400–8417, doi: 10.1002/2014JD021886.

    Article  Google Scholar 

  • Wang, Z. L., H. Zhang, and X. Y. Zhang, 2016: Projected response of East Asian summer monsoon system to future reductions in emissions of anthropogenic aerosols and their precursors. Climate Dyn., 47, 1455–1468, doi: 10.1007/s00382-015-2912-7.

    Article  Google Scholar 

  • Wei, X. D., and H. Zhang, 2011: Analysis of optical properties of nonspherical dust aerosols. Acta Opt. Sinica, 31, 0501002, doi: 10.3788/aos201131.0501002. (in Chinese)

    Article  Google Scholar 

  • Wu, T. W., R. C. Yu, F. Zhang, et al.,2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123–147, doi: 10.1007/s00382-008-0487-2.

    Article  Google Scholar 

  • Zhang, H., Z. L. Wang, Z. Z. Wang, et al.,2012: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM–aerosol coupled system. Climate Dyn., 38, 1675–1693, doi: 10.1007/s00382-011-1131-0.

    Article  Google Scholar 

  • Zhang, H., X. Jing, and J. Li, 2014: Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1. Geosci. Model Dev., 7, 737–754, doi: 10.5194/gmd-7-737-2014.

    Article  Google Scholar 

  • Zhang, H., C. Zhou, Z. L. Wang, et al.,2015a: The influence of different black carbon and sulfate mixing methods on their optical and radiative properties. J. Quant. Spectrosc. Radiat. Transf., 161, 105–116, doi: 10.1016/j.jqsrt.2015.04.002.

    Article  Google Scholar 

  • Zhang, H., Q. Chen, and B. Xie, 2015b: A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact. J. Quant. Spectrosc. Radiat. Transf., 150, 76–86, doi: 10.1016/j.jqsrt.2014.08.024.

    Article  Google Scholar 

  • Zhang, H., S. Y. Zhao, Z. L. Wang, et al.,2016: The updated effective radiative forcing of major anthropogenic aerosols and their effects on global climate at present and in the future. Int. J. Climatol., 36, 4029–4044, doi: 10.1002/joc.4613.

    Article  Google Scholar 

  • Zhao, S. Y., X. F. Zhi, H. Zhang, et al.,2014: Primary assessment of the simulated climatic state using a coupled aerosol–climate model BCC_AGCM2.0.1_CAM. Climatic Environ. Res., 19, 265–277, doi: 10.3878/j.issn.1006-9585.2012. 12015. (in Chinese)

    Google Scholar 

  • Zhao, S. Y., H. Zhang, S. Feng, et al.,2015: Simulating direct effects of dust aerosol on arid and semi-arid regions using an aerosol–climate coupled system. Int. J. Climatol., 35, 1858–1866, doi: 10.1002/joc.4093.

    Article  Google Scholar 

  • Zhao, S. Y., H. Zhang, Z. L. Wang, et al.,2017: Simulating the effects of anthropogenic aerosols on terrestrial aridity using an aerosol–climate coupled model. J. Climate, 30, 7451–7463, doi: 10.1175/JCLI-D-16-0407.1.

    Article  Google Scholar 

  • Zhou, C., H. Zhang, and Z. L. Wang, 2013: Impact of different mixing ways of black carbon and non-absorbing aerosols on the optical properties. Acta Opt. Sinica, 33, 0829001, doi: 10.3788/AOS201333.0829001. (in Chinese)

    Article  Google Scholar 

  • Zhou, C., H. Zhang, S. Y. Zhao, et al.,2018: On effective radiative forcing of partial internally and externally mixed aerosols and their effects on global climate. J. Geophys. Res. Atmos., 123, 401–423, doi: 10.1002/2017JD027603.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Zhou.

Additional information

Supported by the (Key) National Natural Science Foundation of China (91644211 and 41575002) and National Key Research and Development Program of China (2017YFA0603502).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhou, C. & Zhao, S. Influences of the Internal Mixing of Anthropogenic Aerosols on Global Aridity Change. J Meteorol Res 32, 723–733 (2018). https://doi.org/10.1007/s13351-018-7155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7155-1

Key words

Navigation