Advertisement

Journal of Meteorological Research

, Volume 32, Issue 6, pp 896–908 | Cite as

Impacts of Land-Use Data on the Simulation of Surface Air Temperature in Northwest China

  • Yaohui Li
  • Cailing ZhaoEmail author
  • Tiejun Zhang
  • Wei Wang
  • Haixia Duan
  • Yuanpu Liu
  • Yulong Ren
  • Zhaoxia Pu
Special Collection on Weather and Climate under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations
  • 365 Downloads

Abstract

This study examines the impacts of land-use data on the simulation of surface air temperature in Northwest China by the Weather Research and Forecasting (WRF) model. International Geosphere–Biosphere Program (IGBP) landuse data with 500-m spatial resolution are generated from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products. These data are used to replace the default U.S. Geological Survey (USGS) land-use data in the WRF model. Based on the data recorded by national basic meteorological observing stations in Northwest China, results are compared and evaluated. It is found that replacing the default USGS land-use data in the WRF model with the IGBP data improves the ability of the model to simulate surface air temperature in Northwest China in July and December 2015. Errors in the simulated daytime surface air temperature are reduced, while the results vary between seasons. There is some variation in the degree and range of impacts of land-use data on surface air temperature among seasons. Using the IGBP data, the simulated daytime surface air temperature in July 2015 improves at a relatively small number of stations, but to a relatively large degree; whereas the simulation of daytime surface air temperature in December 2015 improves at almost all stations, but only to a relatively small degree (within 1°C). Mitigation of daytime surface air temperature overestimation in July 2015 is influenced mainly by the change in ground heat flux. The modification of underestimated temperature comes mainly from the improvement of simulated net radiation in December 2015.

Key words

surface air temperature land-use data numerical simulation Northwest China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

We thank the two anonymous reviewers and the editor-in-chief for their comments to improve this paper.

References

  1. Cheng, F.-Y., and D. W. Byun, 2008: Application of high resolution land use and land cover data for atmospheric modeling in the Houston–Galveston metropolitan area. Part I: Meteorological simulation results. Atmos. Environ., 42, 7795–7811, doi: 10.1016/j.atmosenv.2008.04.055.Google Scholar
  2. Cheng, F.-Y., Y.-C. Hsu, P.-L. Lin, et al., 2013: Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. J. Appl. Meteor. Climatol., 52, 570–587, doi: 10.1175/JAMC-D-12-0109.1.CrossRefGoogle Scholar
  3. De Meij, A., and J. F. Vinuesa, 2014: Impact of SRTM and Corine Land Cover data on meteorological parameters using WRF. Atmos. Res., 143, 351–370, doi: 10.1016/j.atmosres. 2014.03.004.CrossRefGoogle Scholar
  4. De Noblet-Ducoudré, N., J.-P. Boisier, A. Pitman, et al., 2012: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate, 25, 3261–3281, doi: 10.1175/JCLI-D-11-00338.1.CrossRefGoogle Scholar
  5. Ek, M. B., K. E. Mitchell, Y. Lin, et al., 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos., 108, 8851, doi: 10.1029/2002 JD003296.CrossRefGoogle Scholar
  6. Gao, X. J., Y. Luo, W. T. Lin, et al., 2003: Simulation of effects of land use change on climate in China by a regional climate model. Adv. Atmos. Sci., 20, 583–592, doi: 10.1007/BF 02915501.CrossRefGoogle Scholar
  7. Grossman-Clarke, S., J. A. Zehnder, T. Loridan, et al., 2010: Contribution of land use changes to near-surface air temperatures during recent summer extreme heat events in the Phoenix metropolitan area. J. Appl. Meteor. Climatol., 49, 1649–1664, doi: 10.1175/2010JAMC2362.1.CrossRefGoogle Scholar
  8. Jiang, X. Y., C. Wiedinmyer, F. Chen, et al., 2008: Predicted impacts of climate and land use change on surface ozone in the Houston, Texas, area. J. Geophys. Res. Atmos., 113, D20312, doi: 10.1029/2008JD009820.CrossRefGoogle Scholar
  9. Jiménez-Esteve, B., M. Udina, M. R. Soler, et al., 2018: Land use and topography influence in a complex terrain area: A high resolution mesoscale modelling study over the Eastern Pyrenees using the WRF model. Atmos. Res., 202, 49–62, doi: 10.1016/j.atmosres.2017.11.012.CrossRefGoogle Scholar
  10. Jin, J. M., N. L. Miller, and N. Schlegel, 2010: Sensitivity study of four land surface schemes in the WRF model. Adv. Meteor., 2010, 167436, doi: 10.1155/2010/167436.Google Scholar
  11. Krayenhoff, E. S., and J. A. Voogt, 2010: Impacts of urban albedo increase on local air temperature at daily–annual time scales: Model results and synthesis of previous work. J. Appl. Meteor. Climatol., 49, 1634–1648, doi: 10.1175/2010JAMC 2356.1.CrossRefGoogle Scholar
  12. Pielke, R. A., A. Pitman, D. Niyogi, et al., 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. WIREs: Climate Change, 2, 828–850, doi: 10.1002/wcc.144.Google Scholar
  13. Qu, R. J., X. L. Cui, H. M. Yan, et al., 2013: Impacts of land cover change on the near-surface temperature in the North China Plain. Adv. Meteor., 2013, 409302, doi: 10.1155/2013/409302.Google Scholar
  14. Ran, Y. H., X. Li, and L. Lu, 2009: China land cover classification at 1 km spatial resolution based on a multi-source data fusion approach. Adv. Earth Sci., 24, 192–203, doi: 10.3321/j.issn:1001-8166.2009.02.009. (in Chinese)Google Scholar
  15. Ran, Y. H., X. Li, and L. Lu, 2010: Evaluation of four remote sensing based land cover products over China. Int. J. Remote Sens., 31, 391–401, doi: 10.1080/01431160902893451.CrossRefGoogle Scholar
  16. Santos-Alamillos, F. J., D. Pozo-Vázquez, J. A. Ruiz-Arias, et al., 2015: Influence of land-use misrepresentation on the accuracy of WRF wind estimates: Evaluation of GLCC and CORINE land-use maps in southern Spain. Atmos. Res., 157, 17–28, doi: 10.1016/j.atmosres.2015.01.006.CrossRefGoogle Scholar
  17. Schicker, I., D. A. Arias, and P. Seibert, 2016: Influences of updated land-use datasets on WRF simulations for two Austrian regions. Meteor. Atmos. Phys., 128, 279–301, doi: 10.1007/s00703-015-0416-y.CrossRefGoogle Scholar
  18. Sertel, E., A. Robock, and C. Ormeci, 2010: Impacts of land cover data quality on regional climate simulations. Int. J. Climatol., 30, 1942–1953, doi: 10.1002/joc.2036.CrossRefGoogle Scholar
  19. Wang, H. J., S. P. Dai, and X. B. Huang, 2013: The remote sensing monitoring analysis based on object-oriented classification method. Advances in Image and Graphics Technologies, T. Tan, Q. Ruan, X. Chen, et al., Eds., Springer, Berlin, Heidelberg, 363, 92–101, doi: 10.1007/978-3-642-37149-3_12.Google Scholar
  20. Wang, Z., W. D. Yan, S. G. Liu, et al., 2017: Spatial-temporal characteristics of three main land-use types in China based on MODIS data. Acta Ecologica Sinica, 37, 3295–3301, doi: 10.5846/stxb201603010354. (in Chinese)Google Scholar
  21. Weng, Q. H., 2002: Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manage., 64, 273–284, doi: 10.1006/jema.2001.0509.CrossRefGoogle Scholar
  22. Wu, F., J. Y. Zhan, H. M. Yan, et al., 2013: Land cover mapping based on multisource spatial data mining approach for climate simulation: A case study in the farming–pastoral ecotone of North China. Adv. Meteor., 2013, 520803, doi: 10. 1155/2013/520803.Google Scholar
  23. Xu, Z. F., R. Mahmood, Z.-L. Yang, et al., 2015: Investigating diurnal and seasonal climatic response to land use and land cover change over monsoon Asia with the community earth system model. J. Geophys. Res. Atmos., 120, 1137–1152, doi: 10. 1002/2014JD022479.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yaohui Li
    • 1
  • Cailing Zhao
    • 1
    Email author
  • Tiejun Zhang
    • 1
  • Wei Wang
    • 1
  • Haixia Duan
    • 1
  • Yuanpu Liu
    • 1
  • Yulong Ren
    • 1
  • Zhaoxia Pu
    • 2
  1. 1.Key Laboratory for Arid Climate Change and Disaster Reduction of Gansu Province, Lanzhou Institute of Arid Meteorology/ Northwestern Regional Center of Numerical Weather PredictionKey Open Laboratory for Arid Climate Change and Disaster Reduction of the China Meteorological AdministrationLanzhouChina
  2. 2.Department of Atmospheric SciencesUniversity of UtahUTUSA

Personalised recommendations