Skip to main content
Log in

Near-Term Projections of Global and Regional Land Mean Temperature Changes Considering Both the Secular Trend and Multidecadal Variability

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Near-term climate projections are needed by policymakers; however, these projections are difficult because internally generated climate variations need to be considered. In this study, temperature change scenarios in the near-term period 2017–35 are projected at global and regional scales based on a refined multi-model ensemble approach that considers both the secular trend (ST) and multidecadal variability (MDV) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations. The ST and MDV components are adaptively extracted from each model simulation by using the ensemble empirical mode decomposition (EEMD) filter, reconstructed via the Bayesian model averaging (BMA) method for the historical period 1901–2005, and validated for 2006–16. In the simulations of the “medium” representative concentration pathways scenario during 2017–35, the MDV-modulated temperature change projected via the refined approach displays an increase of 0.44°C (90% uncertainty range from 0.30 to 0.58°C) for global land, 0.48°C (90% uncertainty range from 0.29 to 0.67°C) for the Northern Hemispheric land (NL), and 0.29°C (90% uncertainty range from 0.23 to 0.35°C) for the Southern Hemispheric land (SL). These increases are smaller than those projected by the conventional arithmetic mean approach. The MDV enhances the ST in 13 of 21 regions across the world. The largest MDV-modulated warming effect (46%) exists in central America. In contrast, the MDV counteracts the ST in NL, SL, and eight other regions, with the largest cooling effect (220%) in Alaska.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bieniek, P. A., J. E. Walsh, R. L., Thoman, et al., 2014: Using climate divisions to analyze variations and trends in Alaska temperature and precipitation. J. Climate, 27, 2800–2818, doi: 10.1175/JCLI-D-13-00342.1.

    Article  Google Scholar 

  • Bindoff N. L., P. A. Stott, K. M. AchutaRao, et al., 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T. F., et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 867–952, doi: 10.1017/CBO9781107415324.022.

    Google Scholar 

  • Booth B. B. B., N. J. Dunstone, P. R. Halloran, et al., 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232, doi: 10. 1038/nature10946.

    Article  Google Scholar 

  • Chandler R. E., 2013: Exploiting strength, discounting weakness: Combining information from multiple climate simulators. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 371, 1–19, doi: 10.1098/rsta.2012.0388.

    Article  Google Scholar 

  • Chen W. L., Z. H. Jiang, and L. R. Li, 2011: Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J. Climate, 24, 4741–4756, doi: 10.1175/2011JCLI4102.1.

    Article  Google Scholar 

  • Chikamoto Y., A. Timmermann, J. J. Luo, et al., 2015: Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, doi: 10.1038/ncomms7869.

    Article  Google Scholar 

  • Dai A. G., 2013: The influence of the Inter-decadal Pacific Oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633–646, doi: 10.1007/s00382-012-1446-5.

    Article  Google Scholar 

  • DelSole T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909–926, doi: 10.1175/2010JCLI3659.1.

    Article  Google Scholar 

  • Delworth T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676, doi: 10.1007/s003820000075.

    Article  Google Scholar 

  • Enfield D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 2077–2080, doi: 10.1029/2000GL012745.

    Article  Google Scholar 

  • England M. H., S. McGregor, P. Spence, et al., 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4, 222–227, doi: 10.1038/nclimate2106.

    Article  Google Scholar 

  • Flato G., J. Marotzke, B. Abiodun, et al., 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T. F., et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 741–866, doi: 10.1017/CBO9781107415324.020.

    Google Scholar 

  • Fraley C., A. E. Raftery, and T. Gneiting, 2010: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging. Mon. Wea. Rev., 138, 190–202, doi: 10.1175/2009MWR3046.1.

    Article  Google Scholar 

  • Fu C. B., C. Qian, and Z. H. Wu, 2011: Projection of global mean surface air temperature changes in next 40 years: Uncertainties of climate models and an alternative approach. Sci. China Earth Sci., 54, 1400–1406, doi: 10.1007/s11430-011-4235-9.

    Article  Google Scholar 

  • Furrer R., S. R. Sain, D. Nychka, et al., 2007: Multivariate Bayesian analysis of atmosphere–ocean general circulation models. Environ. Ecol. Stat., 14, 249–266, doi: 10.1007/s 10651-007-0018-z.

    Article  Google Scholar 

  • Gao L. H., Z. W. Yan, and X. W. Quan, 2015: Observed and SSTforced multidecadal variability in global land surface air temperature. Climate Dyn., 44, 359–369, doi: 10.1007/s00382-014-2121-9.

    Article  Google Scholar 

  • Ge Q. S., H. L. Liu, X. Ma, et al., 2017: Characteristics of temperature change in China over the last 2000 years and spatial patterns of dryness/wetness during cold and warm periods. Adv. Atmos. Sci., 34, 941–951, doi: 10.1007/s00376-017-6238-8.

    Article  Google Scholar 

  • Giorgi F., and R. Francisco, 2000: Uncertainties in regional climate change prediction: A regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Climate Dyn., 16, 169–182, doi: 10.1007/PL00013733.

    Article  Google Scholar 

  • Giorgi F., and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. J. Climate, 15, 1141–1158, doi: 10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2.

    Article  Google Scholar 

  • Greene A. M., L. Goddard, and U. Lall, 2006: Probabilistic multimodel regional temperature change projections. J. Climate, 19, 4326–4343, doi: 10.1175/JCLI3864.1.

    Article  Google Scholar 

  • Hartmann B., and G. Wendler, 2005: The significance of the 1976 Pacific climate shift in the climatology of Alaska. J. Climate, 18, 4824–4839, doi: 10.1175/JCLI3532.1.

    Article  Google Scholar 

  • Hawkins E., R. S. Smith, J. M. Gregory, et al., 2016: Irreducible uncertainty in near-term climate projections. Climate Dyn., 46, 3807–3819, doi: 10.1007/s00382-015-2806-8.

    Article  Google Scholar 

  • Hu H. F., X. F. Zhi, H. H. Guo, et al., 2016: Bayesian Model Averaging prediction of summer circulation over East Asia based on CMIP5 data. J. Meteor. Sci., 36, 340–348. (in Chinese)

    Google Scholar 

  • Huang N. E., and Z. H. Wu, 2008: A review on Hilbert–Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi: 10.1029/2007RG000228.

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T. F., et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi: 10.1017/CBO9781107415324.

  • Ji F., Z. H. Wu, J. P. Huang, et al., 2014: Evolution of land surface air temperature trend. Nature Climate Change, 4, 462–466, doi: 10.1038/nclimate2223.

    Article  Google Scholar 

  • Kirtman B., S. B. Power, J. A. Adedoyin, et al., 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T. F., et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 953–1028, doi: 10.1017/CBO 9781107415324.023.

    Google Scholar 

  • Knight J. R., R. J. Allan, C. K. Folland, et al., 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi: 10.1029/2005GL024233.

    Article  Google Scholar 

  • Kosaka Y., and S. P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407, doi: 10.1038/nature12534.

    Article  Google Scholar 

  • Kosaka Y., and S. P. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci., 9, 669–673, doi: 10.1038/ngeo2770.

    Article  Google Scholar 

  • Li X. C., S. P. Xie, S. T. Gille, et al., 2016: Atlantic-induced pantropical climate change over the past three decades. Nature Climate Change, 6, 275–279, doi: 10.1038/NCLIMATE2840.

    Article  Google Scholar 

  • Luo J. J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18701–18706, doi: 10.1073/pnas.1210239109.

    Article  Google Scholar 

  • Luo J. J., G. Wang, and D. Dommenget, 2018: May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña-like cooling? Climate Dyn., 50, 1335–1351, doi: 10.1007/s00382-017-3688-8.

    Article  Google Scholar 

  • Masson D., and R. Knutti, 2011: Spatial-scale dependence of climate model performance in the CMIP3 ensemble. J. Climate, 24, 2680–2692, doi: 10.1175/2011JCLI3513.1.

    Article  Google Scholar 

  • McGregor S., A. Timmermann, M. F. Stuecker, et al., 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888–892, doi: 10.1038/nclimate2330.

    Article  Google Scholar 

  • Meehl G. A., L. Goddard, J. Murphy, et al., 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 1467–1485, doi: 10.1175/2009BAMS2778.1.

    Article  Google Scholar 

  • Meehl G. A., and H. Y. Teng, 2012: Case studies for initialized decadal hindcasts and predictions for the Pacific region. Geophys. Res. Lett., 39, L22705, doi: 10.1029/2012GL053423.

    Article  Google Scholar 

  • Morice C. P., J. J. Kennedy, N. A. Rayner, et al., 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi: 10.1029/2011JD017187.

    Article  Google Scholar 

  • Newman M., 2013: An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Climate, 26, 5260–5269, doi: 10.1175/JCLI-D-12-00590.1.

    Article  Google Scholar 

  • Qi Y. J., C. Qian, and Z. W. Yan, 2017: An alternative multi-model ensemble mean approach for near-term projection. Int. J. Climatol., 37, 109–122, doi: 10.1002/joc.4690.

    Article  Google Scholar 

  • Qian C., 2016: Disentangling the urbanization effect, multidecadal variability, and secular trend in temperature in eastern China during 1909–2010. Atmos. Sci. Lett., 17, 177–182, doi: 10.1002/asl.640.

    Article  Google Scholar 

  • Qian C., Z. H. Wu, C. B. Fu, et al., 2011: On changing El Niño: A view from time-varying annual cycle, interannual variability, and mean state. J. Climate, 24, 6486–6500, doi: 10.1175/JCLI-D-10-05012.1.

    Article  Google Scholar 

  • Qian C., and T. J. Zhou, 2014: Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010. J. Climate, 27, 1210–1222, doi: 10.1175/JCLI-D-13-00235.1.

    Article  Google Scholar 

  • Raftery A. E., T. Gneiting, F. Balabdaoui, et al., 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155–1174, doi: 10.1175/MWR2906.1.

    Article  Google Scholar 

  • Räisänen J., and J. S. Ylhäisi, 2011: How much should climate model output be smoothed in space? J. Climate, 24, 867–880, doi: 10.1175/2010JCLI3872.1.

    Article  Google Scholar 

  • Schlesinger M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723–726, doi: 10.1038/367723a0.

    Article  Google Scholar 

  • Schmittner A., M. Latif, and B. Schneider, 2005: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32, L23710, doi: 10.1029/2005GL024368.

    Article  Google Scholar 

  • Semenov V. A., M. Latif, D. Dommenget, et al., 2010: The impact of North Atlantic–Arctic multidecadal variability on Northern Hemisphere surface air temperature. J. Climate, 23, 5668–5677, doi: 10.1175/2010JCLI3347.1.

    Article  Google Scholar 

  • Sutton R. T., and D. L. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115–118, doi: 10.1126/science.1109496.

    Article  Google Scholar 

  • Taylor K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Tebaldi C., L. O. Mearns, D. Nychka, et al., 2004: Regional probabilities of precipitation change: A Bayesian analysis of multi-model simulations. Geophys. Res. Lett., 31, L24213, doi: 10.1029/2004GL021276.

    Article  Google Scholar 

  • Tung K. K., and J. S. Zhou, 2013: Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl. Acad. Sci. USA, 110, 2058–2063, doi: 10.1073/pnas.1212471110.

    Article  Google Scholar 

  • van Oldenborgh G. J., F. J. D. Reyes, S. S. Drijfhout, et al., 2013: Reliability of regional climate model trends. Environ. Res. Lett., 8, 014055, doi: 10.1088/1748-9326/8/1/014055.

    Article  Google Scholar 

  • Wei M., F. L. Qiao, and J. Deng, 2015: A quantitative definition of global warming hiatus and 50-year prediction of globalmean surface temperature. J. Atmos. Sci., 72, 3281–3289, doi: 10.1175/JAS-D-14-0296.1.

    Article  Google Scholar 

  • Wilcox L. J., E. J. Highwood, and N. J. Dunstone, 2013: The influence of anthropogenic aerosol on multidecadal variations of historical global climate. Environ. Res. Lett., 8, 024033, doi: 10.1088/1748-9326/8/2/024033.

    Article  Google Scholar 

  • Wu B., X. L. Chen, F. F. Song, et al., 2015: Initialized decadal predictions by LASG/IAP climate system model FGOALSs2: Evaluations of strengths and weaknesses. Adv. Meteor., 2015, 904826, doi: 10.1155/2015/904826.

    Google Scholar 

  • Wu K. J., and W. L. Qian, 2015: Secular non-linear trends and multi-timescale oscillations of regional surface air temperature in eastern China. Climate Res., 63, 19–30, doi: 10.3354/cr01284.

    Article  Google Scholar 

  • Wu Z. H., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 1–41, doi: 10.1142/S1793536909000047.

    Article  Google Scholar 

  • Wu Z., N. E. Huang, J. M. Wallace, et al., 2011: On the timevarying trend in global-mean surface temperature. Climate Dyn., 37, 759–773, doi: 10.1007/s00382-011-1128-8.

    Article  Google Scholar 

  • Xin X. G., F. Gao, M. Wei, et al., 2018: Decadal prediction skill of BCC_CSM1.1 climate model in East Asia. Int. J. Climatol., 38, 584–592, doi: 10.1002/joc.5195.

    Article  Google Scholar 

  • Yang C., Z. W. Yan, and Y. H. Shao, 2012: Probabilistic precipitation forecasting based on ensemble output using generalized additive models and Bayesian model averaging. Acta Meteor. Sinica, 26, 1–12, doi: 10.1007/s13351-012-0101-8.

    Article  Google Scholar 

  • Yao S. L., J. J. Luo, G. Huang, et al., 2017: Distinct global warming rates tied to multiple ocean surface temperature changes. Nature Climate Change, 7, 486–491, doi: 10.1038/NCLIMATE3304.

    Article  Google Scholar 

  • Zhang R., T. L. Delworth, and I. M. Held, 2007: Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett., 34, L02709, doi: 10.1029/2006gl028683.

    Google Scholar 

  • Zhang R., T. L. Delworth, R. Sutton, et al., 2013: Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci., 70, 1135–1144, doi: 10.1175/JAS-D-12-0331.1.

    Article  Google Scholar 

  • Zhang X. L., and X. D. Yan, 2014: A novel method to improve temperature simulations of general circulation models based on ensemble empirical mode decomposition and its application to multi-model ensembles. Tellus A, 66, 24,846, doi: 10.3402/tellusa.v66.24846.

    Article  Google Scholar 

  • Zheng J. Y., Y. Liu, and Z. X. Hao, 2015: Annual temperature reconstruction by signal decomposition and synthesis from multi-proxies in Xinjiang, China, from 1850 to 2001. PLoS One, 10, e0144210, doi: 10.1371/journal.pone.0144210.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers and the Editor for their comments and suggestions to help improve the manuscript. We also thank the Met Office Hadley Center and Climate Research Unit for providing the observed HadCRUT4 data used in this work and the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Qian.

Additional information

Supported by the National Key Research and Development Program of China (2016YFA0600404), Youth Innovation Promotion Association of the Chinese Academy of Sciences (2016075), and Jiangsu Collaborative Innovation Center for Climate Change.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Yan, Z., Qian, C. et al. Near-Term Projections of Global and Regional Land Mean Temperature Changes Considering Both the Secular Trend and Multidecadal Variability. J Meteorol Res 32, 337–350 (2018). https://doi.org/10.1007/s13351-018-7136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7136-4

Key words

Navigation