Skip to main content
Log in

Recent Rapid Decline of the Arctic Winter Sea Ice in the Barents–Kara Seas Owing to Combined Effects of the Ural Blocking and SST

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This study investigates why the Arctic winter sea ice loss over the Barents–Kara Seas (BKS) is accelerated in the recent decade. We first divide 1979–2013 into two time periods: 1979–2000 (P1) and 2001–13 (P2), with a focus on P2 and the difference between P1 and P2. The results show that during P2, the rapid decline of the sea ice over the BKS is related not only to the high sea surface temperature (SST) over the BKS, but also to the increased frequency, duration, and quasi-stationarity of the Ural blocking (UB) events. Observational analysis reveals that during P2, the UB tends to become quasi stationary and its frequency tends to increase due to the weakening (strengthening) of zonal winds over the Eurasia (North Atlantic) when the surface air temperature (SAT) anomaly over the BKS is positive probably because of the high SST. Strong downward infrared (IR) radiation is seen to occur together with the quasi-stationary and persistent UB because of the accumulation of more water vapor over the BKS. Such downward IR favors the sea ice decline over the BKS, although the high SST over the BKS plays a major role. But for P1, the UB becomes westward traveling due to the opposite distribution of zonal winds relative to P2, resulting in weak downward IR over the BKS. This may lead to a weak decline of the sea ice over the BKS. Thus, it is likely that the rapid decline of the sea ice over the BKS during P2 is attributed to the joint effects of the high SST over the BKS and the quasi-stationary and long-lived UB events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexeev, V. A., V. V. Ivanov, R. Kwok, et al., 2013: North Atlantic warming and declining volume of Arctic sea ice. The Cryosphere Discuss., 7, 245–265, doi: 10.5194/tcd-7-245-2013.

    Article  Google Scholar 

  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, et al., 1996: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1 (updated yearly). Boulder, CO, USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Accessed on 6 November 2017. doi: 10.5067/8GQ8LZQVL0VL.

    Google Scholar 

  • Chen, X. D., and D. H. Luo, 2017: Arctic sea ice decline and continental cold anomalies: Upstream and downstream effects of Greenland blocking. Geophys. Res. Lett., 44, 3411–3419, doi: 10.1002/2016GL072387.

    Article  Google Scholar 

  • Cohen, J., J. A. Screen, J. C. Furtado, et al., 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627–637, doi: 10.1038/ngeo2234.

    Article  Google Scholar 

  • Comiso, J. C., 2006: Abrupt decline in the Arctic winter sea ice cover. Geophys. Res. Lett., 33, L18504, doi: 10.1029/2006GL027341.

    Article  Google Scholar 

  • Comiso, J. C., L. Parkinson, R. Gersten, et al., 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi: 10.1029/2007GL031972.

    Article  Google Scholar 

  • Davini, P., C. Cagnazzo, S. Gualdi, et al., 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 6496–6509, doi: 10.1175/JCLI-D-12-00032.1.

    Article  Google Scholar 

  • Diao, Y. N., J. P. Li, and D. H. Luo, 2006: A new blocking index and its application: Blocking action in the Northern Hemisphere. J. Climate, 19, 4819–4839, doi: 10.1175/JCLI3886.1.

    Article  Google Scholar 

  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 2077–2080, doi: 10.1029/2000GL012745.

    Article  Google Scholar 

  • Fang, Z. F., and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. J. Climate, 7, 1897–1914, doi: 10.1175/1520-0442(1994)007.

    Article  Google Scholar 

  • Francis, J. A., and E. Hunter, 2007: Drivers of declining sea ice in the Arctic winter: A tale of two seas. Geophys. Res. Lett., 34, L17503, doi: 10.1029/2007GL030995.

    Article  Google Scholar 

  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi: 10.1029/2012GL051000.

    Article  Google Scholar 

  • Gao, Y. Q., J. Q. Sun, F. Li, et al., 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92–114, doi: 10.1007/s00376-014-0009-6.

    Article  Google Scholar 

  • Gong, T. T., and D. H. Luo, 2017: Ural Blocking as an amplifier of the Arctic sea ice decline in winter. J. Climate, 30, 2639–2654, doi: 10.1175/JCLI-D-16-0548.1.

    Article  Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/ NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477(1996)077.

    Article  Google Scholar 

  • Luo, B. H., D. H. Luo, L. X. Wu, et al., 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ. Res. Lett., 12, 054017, doi: 10.1088/1748-9326/aa69d0.

    Article  Google Scholar 

  • Luo, D. H., 2005: A barotropic envelope Rossby soliton model for block–eddy interaction. Part I: Effect of topography. J. Atmos. Sci., 62, 5–21, doi: 10.1175/1186.1.

    Google Scholar 

  • Luo, D. H., and T. T. Gong, 2006: A possible mechanism for the eastward shift of interannual NAO action centers in last three decades. Geophy. Res. Lett., 33, L24815, doi: 10.1029/2006GL027860.

    Article  Google Scholar 

  • Luo, D. H., A. R. Lupo, and H. Wan, 2007: Dynamics of eddydriven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64, 3–28, doi: 10.1175/JAS3818.1.

    Google Scholar 

  • Luo, D. H., Y. N. Diao, and S. B. Feldstein, 2011: The variability of the Atlantic storm track and the North Atlantic Oscillation: A link between intraseasonal and interannual variability. J. Atmos. Sci., 68, 577–601, doi: 10.1175/2010JAS3579.1.

    Article  Google Scholar 

  • Luo, D. H., J. Cha, L. H. Zhong, et al., 2014: A nonlinear multiscale interaction model for atmospheric blocking: The eddy–blocking matching mechanism. Quart. J. Roy. Meteor. Soc., 140, 1785–1808, doi: 10.1002/qj.2337.

    Article  Google Scholar 

  • Luo, D. H., Y. Q. Xiao, Y. Yao, et al., 2016a: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 3925–3947, doi: 10.1175/JCLI-D-15-0611.1.

    Google Scholar 

  • Luo, D. H., Y. Q. Xiao, Y. N. Diao, et al., 2016b: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation. J. Climate, 29, 3949–3971, doi: 10.1175/JCLI-D-15-0612.1.

    Google Scholar 

  • Miles, M. W., D. V. Divine, T. Furevik, et al., 2014: A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophys. Res. Lett., 41, 463–469, doi: 10.1002/2013GL058084.

    Article  Google Scholar 

  • Park, D.-S., S. Lee, and S. B. Feldstein, 2015: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 4027–4033, doi: 10.1175/JCLID-15-0042.1.

    Article  Google Scholar 

  • Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, doi: 10.1088/1748-9326/9/3/034018.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nature Climate Change, 4, 704–709, doi: 10.1038/nclimate2271.

    Article  Google Scholar 

  • Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 4772–4784, doi: 10.1175/JCLI3885.1.

    Article  Google Scholar 

  • Spielhagen, R. F., K. Werner, S. A. Sørensen, et al., 2011: Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science, 331, 450–453, doi: 10.1126/science.1197397.

    Article  Google Scholar 

  • Stramler, K., A. D. Del Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 1747–1762, doi: 10.1175/2010JCLI3817.1.

    Article  Google Scholar 

  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343–365, doi: 10.3402/tellusa.v42i3.11882.

    Article  Google Scholar 

  • Wu, B. Y., R. H. Huang, and D. Y. Gao, 2002: Numerical simulations on influences of variation of sea ice thickness and extent on atmospheric circulation. J. Meteor. Res., 16, 150–164.

    Google Scholar 

  • Zhang, L., and T. Li, 2017: Physical processes responsible for the interannual variability of sea ice concentration in Arctic in boreal autumn since 1979. J. Meteor. Res., 31, 468–475, doi: 10.1007/s13351-017-6105-7.

    Article  Google Scholar 

Download references

Acknowldgments

The authors thank the three anonymous reviewers for their helpful comments in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Yao.

Additional information

Supported by the National Natural Science Foundation of China (41505075 and 41790473) and National Key Research and Development Program of China (2016YFA0601802).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, B., Yao, Y. Recent Rapid Decline of the Arctic Winter Sea Ice in the Barents–Kara Seas Owing to Combined Effects of the Ural Blocking and SST. J Meteorol Res 32, 191–202 (2018). https://doi.org/10.1007/s13351-018-7104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7104-z

Key words

Navigation