Skip to main content
Log in

Quasi-3-yr Cycle of Rainy Season Precipitation in Tibet Related to Different Types of ENSO during 1981–2015

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The rainy season precipitation in Tibet (RSPT) is a direct cause for local floods/droughts. It also indirectly affects the thermal conditions of the Tibetan Plateau, which can result in anomalous patterns of atmospheric circulation over East Asia. The interannual variability of the RSPT is often linked with the El Niño–Southern Oscillation (ENSO), but the relevant mechanisms are far from being understood, particularly for different types of ENSO events. We investigated the interannual variation of the RSPT in association with different types of ENSO. A quasi-3-yr period of the RSPT (less–more–more precipitation) was significant at the 95% confidence level. A joint multi-taper method with singular value decomposition analysis of the coupled field between the RSPT and the sea surface temperature (SST) revealed that the developing eastern Pacific type El Niño was accompanied by a decrease in the RSPT. The shift from the central Pacific type El Niño to the eastern Pacific La Niña was accompanied by an increase in the RSPT. Weakening of the central Pacific La Niña was accompanied by an increase in the RSPT. Analysis of the mechanism of this coupling, using the same analysis method but other climatic factors, indicated that the gradually strengthening eastern Pacific El Niño can inhibit the Walker circulation, weakening the South Asian summer monsoon, and resulting in transport of less water vapor from the Bay of Bengal to Tibet. The change from the central Pacific El Niño to the eastern Pacific La Niña led to continued strengthening of the Walker circulation with westward movement of the ascending area. This enhanced the South Asian summer monsoon over the Arabian Sea and transported more water vapor to Tibet. The decreasing central Pacific La Niña accompanied by persistent cooling of SSTs in the equatorial Pacific led to a strong eastern North Pacific summer monsoon, causing an anomaly in the easterly transport of water vapor from the Sea of Japan to Tibet and increased RSPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apipattanavis, S., G. J. McCabe, B. Rajagopalan, et al., 2009: Joint spatiotemporal variability of global sea surface temperatures and global Palmer drought severity index values. J. Climate, 22, 6251–6267, doi: 10.1175/2009JCLI2791.1.

    Article  Google Scholar 

  • Benton, G. S., R. T. Blackburn, and V. O. Snead, 1950: The role of the atmosphere in the hydrologic cycle. Eos, Trans. Amer. Geophys. Union, 31, 61–73, doi: 10.1029/TR031i001p00061.

    Article  Google Scholar 

  • Ding, Y. H., 1994: The summer monsoon in East Asia. Monsoons over China. Ding, Y. H. Ed., Kluwer Academic, Boston, 1–9, doi: 10.1007/978-94-015-8302-2_1.

  • Du, J., and Y. C. Ma, 2004: Climatic trend of rainfall over Tibetan Plateau from 1971 to 2000. Acta Geographica Sinica, 59, 375–382, doi: 10.11821/xb200403007. (in Chinese)

    Google Scholar 

  • Fu, C. B., and J. Fletcher, 1985: Two types of warming at the equator during El Niño. Chin. Sci. Bull., 8, 596–599, doi: 10.1360/csb1985-30-8-596. (in Chinese)

    Google Scholar 

  • Han, X., F. Y. Wei, Y. M. Tourre, et al., 2008: Spatio-temporal variability of Northern Hemispheric sea level pressure (SLP) and precipitation over the mid-to-low reaches of the Yangtze River. Adv. Atmos. Sci., 25, 458–466, doi: 10.1007/s00376-008-0458-x.

    Article  Google Scholar 

  • Huang, X. Q., C. R. Luobu, Y. Yang, et al., 2013: Temporal and spatial variation of precipitation events frequency and intensity in rainy season during 1961–2007 in Tibet, China. J. Desert Res., 33, 902–910, doi: 10.7522/j.issn.1000-694X.1013.00088. (in Chinese)

    Google Scholar 

  • Jin, Z. H., and S. Y. Tao, 1999: A study on the relationships between ENSO cycle and rainfalls during summer and winter in eastern China. Chinese J. Atmos. Sci., 23, 663–672, doi: 10.3878/j.issn.1006-9895.1999.06.03. (in Chinese)

    Google Scholar 

  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I: Observational aspects. J. Atmos. Sci., 33, 1937–1954, doi: 10.1175/1520-0469(1976)033.

    Google Scholar 

  • Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515, doi: 10.1175/2008JCLI2624.1.

    Article  Google Scholar 

  • Li, X. Z., and W. Zhou, 2012: Quasi-4-yr coupling between El Niño–Southern Oscillation and water vapor transport over East Asia–WNP. J. Climate, 25, 5879–5891, doi: 10.1175/JCLI-D-11-00433.1.

    Article  Google Scholar 

  • Li, X. Z., W. Zhou, D. L. Chen, et al., 2014: Water vapor transport and moisture budget over eastern China: Remote forcing from the two types of El Niño. J. Climate, 27, 8778–8792, doi: 10.1175/JCLI-D-14-00049.1.

    Article  Google Scholar 

  • Liu, X. D., and Z.-Y. Yin, 2001: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic oscillation. J. Climate, 14, 2896–2909, doi: 10.1175/1520-0442(2001)014.

    Article  Google Scholar 

  • Lu, H. L., Q. Q. Shao, J. Y. Liu, et al., 2008: Cluster analysis on summer precipitation field over Qinghai–Tibetan Plateau from 1961 to 2004. J. Geogr. Sci., 18, 295–307, doi: 10.1007/s11442-008-0295-y.

    Article  Google Scholar 

  • Lu, R. Y., and R. H. Huang, 1998: Influence of East Asia/Pacific teleconnection pattern on the interannual variations of the blocking highs over the northeastern Asia in summer. Scientia Atmospherica Sinica, 22, 727–734, doi: 10.3878/j.issn.1006-9895.1998.05.07. (in Chinese)

    Google Scholar 

  • Mann, M. E., and J. Park, 1994: Global-scale modes of surface temperature variability on interannual to century timescales. J. Geophys. Res., 99, 25819–25833, doi: 10.1029/94JD02396.

    Article  Google Scholar 

  • Mann, M. E., and J. Park, 1996: Joint spatiotemporal modes of surface temperature and sea level pressure variability in the Northern Hemisphere during the last century. J. Climate, 9, 2137–2162, doi: 10.1175/1520-0442(1996)009.

    Article  Google Scholar 

  • Mann, M. E., and J. Park, 1999: Oscillatory spatiotemporal signal detection in climate studies: A multiple-taper spectral domain approach. Adv. Geophys., 41, 1–131, doi: 10.1016/S0065-2687(08)60026-6.

    Article  Google Scholar 

  • Minobe, S., 2000: Spatio-temporal structure of the pentadecadal variability over the North Pacific. Prog. Oceanogr., 47, 381–408, doi: 10.1016/S0079-6611(00)00042-2.

    Article  Google Scholar 

  • Murakami, T., and J. Matsumoto, 1994: Summer monsoon over the Asian continent and western North Pacific. J. Meteor. Soc. Japan, 72, 719–745, doi: 10.2151/jmsj1965.72.5_719.

    Article  Google Scholar 

  • Paek, H. J., J. Y. Yu, J. W. Hwu, et al., 2015: A source of AGCM bias in simulating the western Pacific subtropical high: Different sensitivities to the two types of ENSO. Mon. Wea. Rev., 143, 2348–2362, doi: 10.1175/MWR-D-14-00401.1.

    Article  Google Scholar 

  • Pubu, Z. M., S. W. Zhou, and Y. H. Fu, 2002: Reflection from the ENSO event on precipitation during the summer of Tibet. Tibet’s Science & Technology, 2, 41–47, doi: 10.3969/j.issn.1004-3403.2002.02.017. (in Chinese)

    Google Scholar 

  • Simmonds, I., D. H. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 1353–1367, doi: 10.1175/1520-0442(1999)012.

    Article  Google Scholar 

  • Small, D., and S. Islam, 2008: Low frequency variability in fall precipitation across the United States. Water Resour. Res., 44, W04426, doi: 10.1029/2006WR005623.

    Article  Google Scholar 

  • Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai–Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23–30, doi: 10.1175/1520-0477(1981)062.

    Article  Google Scholar 

  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology. C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, Oxford, pp. 60–92.

  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638, doi: 10.1175/1520-0477(1999)080.

    Article  Google Scholar 

  • Wang, B., R. Wu, and K.-M. Lau, 2001: Interannual variability of Asian summer monsoon: Contrast between the Indian and western North Pacific–East Asian monsoons. J. Climate, 14, 4073–4090, doi: https://doi.org/10.1175/1520-0442(2001)014,4073:IVOTAS.2.0.CO;2.

    Article  Google Scholar 

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926, doi: 10.1002/qj.49711850705.

    Article  Google Scholar 

  • Wei, W., R. H. Zhang, M. Wen, et al., 2015: Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28, 2623–2634, doi: 10.1175/JCLI-D-14-00454.1.

    Article  Google Scholar 

  • Wu, G. X., and Y. M. Liu, 2016: Impacts of the Tibetan Plateau on Asian climate. Meteor. Monogr., 56, 7.1–7.29, doi: 10.1175/AMSMONOGRAPHS-D-15-0018.1.

    Article  Google Scholar 

  • Yanai, M., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319–351, doi: 10.2151/jmsj1965.70.1B_319.

    Article  Google Scholar 

  • Ye, D. Z., 1981: Some characteristics of the summer circulation over the Qinghai–Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62, 14–19, doi: 10.1175/1520-0477(1981)062.

    Article  Google Scholar 

  • Yeh, S. W., J. S. Kug, B. Dewitte, et al., 2009: El Niño in a changing climate. Nature, 461, 511–514, doi: 10.1038/nature08316.

    Article  Google Scholar 

  • Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 7702–7722, doi: 10.1175/JCLI-D-11-00576.1.

    Article  Google Scholar 

  • Zang, H. F., and S. W. Wang, 1984: Equatorial eastern Pacific SST and subtropical high. Acta Oceanol. Sinica, 3, 471–476.

    Google Scholar 

  • Zhang, Q., G. X. Wu, and Y. F. Qian, 2002: The bimodality of the 100-hPa South Asian high and its relationship to the climate anomaly over East Asia in summer. J. Meteor. Soc. Japan, 80, 733–744, doi: 10.2151/jmsj.80.733.

    Article  Google Scholar 

  • Zheng, Q. L., and K.-N. Liou, 1986: Dynamic and thermodynamic influences of the Tibetan Plateau on the atmosphere in a general circulation model. J. Atmos. Sci., 43, 1340–1355, doi: 10.1175/1520-0469(1986)043.

    Article  Google Scholar 

  • Zhou, S. W., Z. M. Pubu, and L. Jia, 2000: Analysis of rainfall patterns during rainy season over the Tibetan Plateau. Meteor. Mon., 26, 39–43, doi: 10.3969/j.issn.1000-0526.2000.05.010. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxue Wang.

Additional information

Supported by the Science and Technology Program of Tibet (Z2016R67F05) and National Natural Science Foundation of China (41275097).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Ma, Z. Quasi-3-yr Cycle of Rainy Season Precipitation in Tibet Related to Different Types of ENSO during 1981–2015. J Meteorol Res 32, 181–190 (2018). https://doi.org/10.1007/s13351-018-7100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7100-3

Key words

Navigation