Skip to main content
Log in

Improving Representation of Tropical Cloud Overlap in GCMs Based on Cloud-Resolving Model Data

  • Special Collection on Aerosol-Cloud-Radiation Interactions
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The decorrelation length (Lcf) has been widely used to describe the behavior of vertical overlap of clouds in general circulation models (GCMs); however, it has been a challenge to associate Lcf with the large-scale meteorological conditions during cloud evolution. This study explored the relationship between Lcf and the strength of atmospheric convection in the tropics based on output from a global cloud-resolving model. Lcf tends to increase with vertical velocity in the mid-troposphere (w500) at locations of ascent, but shows little or no dependency on w500 at locations of descent. A representation of Lcf as a function of vertical velocity is obtained, with a linear regression in ascending regions and a constant value in descending regions. This simple and dynamic-related representation of Lcf leads to a significant improvement in simulation of both cloud cover and radiation fields compared with traditional overlap treatments. This work presents a physically justifiable approach to depicting cloud overlap in the tropics in GCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, G. P., S. A. Clough, F. X. Kneizys, et al., 1986: AFGL atmospheric constituent profiles (0.120 km). AFGL Tech. Rep., AFGL-TR-86-0110, Bedford, MA, Air Force Geophys. Lab., 1–43.

    Google Scholar 

  • Barker, H. W., 2008: Representing cloud overlap with an effective decorrelation length: An assessment using CloudSat and CALIPSO data. J. Geophys. Res., 113, D24205, doi: 10.1029/2008JD010391.

    Article  Google Scholar 

  • Barker, H. W., and P. Räisänen, 2005: Radiative sensitivities for cloud structural properties that are unresolved by conventional GCMs. Quart. J. Roy. Meteor. Soc., 131, 3103–3122, doi: 10.1256/qj.04.174.

    Article  Google Scholar 

  • Barker, H. W., B. A. Wiellicki, and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53, 2304–2316, doi: 10.1175/1520-0469(1996)053<2304:APFCGA>2.0.CO;2.

    Google Scholar 

  • Barker, H. W., G. L. Stephens, P. Partain, et al., 2003: Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 2676–2699, doi: 10.1175/1520-0442(2003)016<2676:ADASRT>2.0.CO;2.

    Article  Google Scholar 

  • Bergman, J. W., and P. J. Rasch, 2002: Parameterizing vertically coherent cloud distributions. J. Atmos. Sci., 59, 2165–2182, doi: 10.1175/1520-0469(2002)059<2165:PVCCD>2.0.CO;2.

    Article  Google Scholar 

  • Bodas-Salcedo, A., M. J. Webb, S. Bony, et al., 2011: COSP: Satellite simulation software for model assessment. Bull. Am. Meteor. Soc., 92, 1023–1043, doi: 10.1175/2011BAMS2856.1.

    Article  Google Scholar 

  • Bony, S., K.-M. Lau, and Y. C. Sud, 1997: Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J. Climate, 10, 2055–2077, doi: 10.1175/1520-0442(1997)010<2055:SSTALS>2.0.CO;2.

    Article  Google Scholar 

  • Bony, S., B. Stevens, D. M. W. Frierson, et al., 2015: Clouds, circulation and climate sensitivity. Nature Geosci., 8, 261–268, doi: 10.1038/ngeo2398.

    Article  Google Scholar 

  • Collins, W. D., 2001: Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J. Atmos. Sci., 58, 3224–3242, doi: 10.1175/1520-0469(2001)058<3224:POGCOF>2.0.CO;2. Di

    Article  Google Scholar 

  • Giuseppe, F., 2005: Sensitivity of one-dimensional radiative biases to vertical cloud-structure assumptions: Validation with aircraft data. Quart. J. Roy. Meteor. Soc., 131, 1655–1676, doi: 10.1256/qj.03.129.

    Article  Google Scholar 

  • Di Giuseppe, F., and A. M. Tompkins, 2015: Generalizing cloud overlap treatment to include the effect of wind shear. J. Atmos. Sci., 72, 2865–2876, doi: 10.1175/JAS-D-14-0277.1.

    Article  Google Scholar 

  • GEWEX Cloud System Science Team, 1993: The GEWEX cloud system study (GCSS). Bull. Amer. Meteor. Soc., 74, 387–400, doi: 10.1175/1520-0477(1993)074<0387:TGCSS>2.0.CO;2.

    Article  Google Scholar 

  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 3283–3298, doi: 10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2.

    Article  Google Scholar 

  • Hogan, R. J., and A. J. Illingworth, 2000: Deriving cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc., 126, 2903–2909, doi: 10.1002/qj.49712656914.

    Article  Google Scholar 

  • Ichikawa, H., H. Masunaga, Y. Tsushima, et al., 2012: Reproducibility by climate models of cloud radiative forcing associated with tropical convection. J. Climate, 25, 1247–1262, doi: 10.1175/JCLI-D-11-00114.1.

    Article  Google Scholar 

  • Inoue, T., M. Satoh, H. Miura, et al., 2008: Characteristics of cloud size of deep convection simulated by a global cloud resolving model over the western tropical Pacific. J. Meteor. Soc. Japan, 86A, 1–15, doi: 10.2151/jmsj.86A.1.

    Article  Google Scholar 

  • Inoue, T., M. Satoh, Y. Hagihara, et al., 2010: Comparison of high-level clouds represented in a global cloud system-resolving model with CALIPSO/CloudSat and geostationary satellite observations. J. Geophys. Res., 115, D00H22, doi: 10.1029/2009JD012371.

    Article  Google Scholar 

  • Jin, Z. H., T. P. Charlock, W. L. Jr. Smith, et al., 2004: A parameterization of ocean surface albedo. Geophys. Res. Lett., 31, L22301, doi: 10.1029/2004GL021180.

    Article  Google Scholar 

  • Jing, X. W., H. Zhang, J. Peng, et al., 2016: Cloud overlapping parameter obtained from CloudSat/CALIPSO dataset and its application in AGCM with McICA scheme. Atmos. Res., 170, 52–65, doi: 10.1016/j.atmosres.2015.11.007.

    Article  Google Scholar 

  • Kato, S., S. Sun-Mack, M. F. Miller, et al., 2010: Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res., 115, D00H28, doi: 10.1029/2009JD012277.

    Article  Google Scholar 

  • Lauer, A., and K. Hamilton, 2013: Simulating clouds with global climate models: A comparison of CMIP5 results with CMIP3 and satellite data. J. Climate, 26, 3823–3845, doi: 10.1175/JCLI-D-12-00451.1.

    Article  Google Scholar 

  • Li, J., J. Huang, K. Stamnes, et al., 2015: A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmos. Chem. Phys., 15, 519–536, doi: 10.5194/acp-15-519-2015.

    Article  Google Scholar 

  • Li, J. D., Y. M. Liu, and G. X. Wu, 2009: Cloud radiative forcing in Asian monsoon region simulated by IPCC AR4 AMIP models. Adv. Atmos. Sci., 26, 923–939, doi: 10.1007/s00376-009-8111-x.

    Article  Google Scholar 

  • Liang, S. L., 2001: Narrowband to broadband conversions of land surface albedo. I: Algorithms. Remote Sens. Environ., 76, 213–238, doi: 10.1016/S0034-4257(00)00205-4.

    Google Scholar 

  • Liang, X. Z., and W. C. Wang, 1997: Cloud overlap effects on general circulation model climate simulations. J. Geophys. Res., 102, 11039–11047, doi: 10.1029/97JD00630.

    Article  Google Scholar 

  • Liang, X. Z., and X. Q. Wu, 2005: Evaluation of a GCM subgrid cloud-radiation interaction parameterization using cloudresolving model simulations. Geophys. Res. Lett., 32, L06801, doi: 10.1029/2004GL022301.

    Google Scholar 

  • Mace, G. G., and S. Benson-Troth, 2002: Cloud-layer overlap characteristics derived from long-term cloud radar data. J. Climate, 15, 2505–2515, doi: 10.1175/1520-0442(2002)015<2505:CLOCDF>2.0.CO;2.

    Article  Google Scholar 

  • Marchand, R., G. G. Mace, T. Ackerman, et al., 2008: Hydrometeor detection using CloudSat—An earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519–533, doi: 10.1175/2007JTECHA1006.1.

    Article  Google Scholar 

  • Masunaga, H., M. Satoh, and H. Miura, 2008: A joint satellite and global cloud-resolving model analysis of a Madden–Julian Oscillation event: Model diagnosis.. J. Geophys. Res., 113, D17210, doi: 10.1029/2008JD009986.

    Article  Google Scholar 

  • Miura, H., M. Satoh, T. Nasuno, et al., 2007: A Madden–Julian oscillation event realistically simulated by a global cloudresolving model. Science, 318, 1763–1765, doi: 10.1126/science.1148443.

    Article  Google Scholar 

  • Morcrette, J. J., and Y. Fouquart, 1986: The overlapping of cloud layers in shortwave radiation parameterizations. J. Atmos. Sci., 43, 321–328, doi: 10.1175/1520-0469(1986)043<0321:TOOCLI>2.0.CO;2.

    Article  Google Scholar 

  • Nakanishi, M., and H. Niino, 2006: An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397–407, doi: 10.1007/s10546-005-9030-8.

    Article  Google Scholar 

  • Naud, C. M., A. Del Genio, G. G. Mace, et al., 2008: Impact of dynamics and atmospheric state on cloud vertical overlap. J. Climate, 21, 1758–1770, doi: 10.1175/2007JCLI1828.1.

    Article  Google Scholar 

  • Oreopoulos, L., and M. Khairoutdinov, 2003: Overlap properties of clouds generated by a cloud-resolving model. J. Geophys. Res., 108, 4479, doi: 10.1029/2002JD003329.

    Article  Google Scholar 

  • Oreopoulos, L., D. Lee, Y. C. Sud, et al., 2012: Radiative impacts of cloud heterogeneity and overlap in an atmospheric general circulation model. Atmos. Chem. Phys., 12, 9097–9111, doi: 10.5194/acp-12-9097-2012.

    Article  Google Scholar 

  • Peng, J., H. Zhang, and X. Y. Shen, 2013: Analysis of vertical structure of clouds in East Asia with CloudSat data. Chinese J. Atmos. Sci., 37, 91–100, doi: 10.3878/j.issn.1006-9895.2012.11188. (in Chinese)

    Google Scholar 

  • Räisänen, P., 1998: Effective longwave cloud fraction and maximumrandom overlap of clouds: A problem and a solution. Mon. Wea. Rev., 126, 3336–3340, doi: 10.1175/1520-0493(1998)126<3336:ELCFAM>2.0.CO;2.

    Article  Google Scholar 

  • Räisänen, P., H. W. Barker, M. F. Khairoutdinov, et al., 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc., 130, 2047–2067, doi: 10.1256/qj.03.99.

    Article  Google Scholar 

  • Randall, D., M. Khairoutdinov, A. Arakawa, et al., 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 1547–1564, doi: 10.1175/BAMS-84-11-1547.

    Article  Google Scholar 

  • Sato, T., H. Miura, M. Satoh, et al., 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 4809–4826, doi: 10.1175/2009JCLI2890.1.

    Article  Google Scholar 

  • Satoh, M., T. Matsuno, H. Tomita, et al., 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 3486–3514, doi: 10.1016/j.jcp.2007.02.006.

    Article  Google Scholar 

  • Satoh, M., T. Inoue, and H. Miura, 2010: Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators. J. Geophys. Res., 115, D00H14, doi: 10.1029/2009JD012247.

    Article  Google Scholar 

  • Satoh, M., H. Tomita, H. Yashiro, et al., 2014: The non-hydrostatic icosahedral atmospheric model: Description and development. Progress in Earth and Planetary Science, 1, 18, doi: 10.1186/s40645-014-0018-1.

    Article  Google Scholar 

  • Shonk, J. K. P., R. J. Hogan, J. M. Edwards, et al., 2010: Effect of improving representation of horizontal and vertical cloud structure on the Earth’s global radiation budget. Part I: Review and parametrization. Quart. J. Roy. Meteor. Soc., 136, 1191–1204, doi: 10.1002/qj.647.

    Google Scholar 

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237–273, doi: 10.1175/JCLI-3243.1.

    Article  Google Scholar 

  • Stephens, G. L., D. G. Vane, S. Tanelli, et al., 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi: 10.1029/2008JD009982.

    Article  Google Scholar 

  • Tian, L., and J. A. Curry, 1989: Cloud overlap statistics. J. Geophys. Res., 94, 9925–9935, doi: 10.1029/JD094iD07p09925.

    Article  Google Scholar 

  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357–400, doi: 10.1016/j.fluiddyn.2004.03.003.

    Article  Google Scholar 

  • Tompkins, A. M., and F. Di Giuseppe, 2015: An interpretation of cloud overlap statistics. J. Atmos. Sci., 72, 2877–2889, doi: 10.1175/JAS-D-14-0278.1.

    Article  Google Scholar 

  • Wang, X. C., Y. M. Liu, and Q. Bao, 2016: Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions. Atmos. Res., 167, 89–99, doi: 10.1016/j.atmosres.2015.07.017.

    Article  Google Scholar 

  • Wu, X. Q., and X.-Z. Liang, 2005a: Radiative effects of cloud horizontal inhomogeneity and vertical overlap identified from a monthlong cloud-resolving model simulation. J. Atmos. Sci., 62, 4105–4112, doi: 10.1175/JAS3565.1.

    Article  Google Scholar 

  • Wu, X. Q., and X.-Z. Liang, 2005b: Effect of subgrid cloud-radiation interaction on climate simulations. Geophys. Res. Lett., 32, L24806, doi: 10.1029/2005GL024432.

    Article  Google Scholar 

  • Wu, X. Q., and X. F. Li, 2008: A review of cloud-resolving model studies of convective processes. Adv. Atmos. Sci., 25, 202–212, doi: 10.1007/s00376-008-0202-6.

    Article  Google Scholar 

  • Zhang, F., X.-Z. Liang, J. N. Li, et al., 2013: Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects. J. Geophys. Res. Atmos., 118, 7733–7749, doi: 10.1002/jgrd.50604.

    Article  Google Scholar 

  • Zhang, H., and X. W. Jing, 2010: Effect of cloud overlap assumptions in climate models on modeled earth–atmosphere radiative fields. Chinese J. Atmos. Sci., 34, 520–532, doi: 10.3878/j.issn.1006-9895.2010.03.06. (in Chinese)

    Google Scholar 

  • Zhang, H., and X. W. Jing, 2016: Advances in studies of cloud overlap and its radiative transfer in climate models. J. Meteor. Res., 30, 156–168, doi: 10.1007/s13351-016-5164-5.

    Article  Google Scholar 

  • Zhang, H., T. Nakajima, G. Y. Shi, et al., 2003: An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations. J. Geophys. Res., 108, 4641, doi: 10.1029/2002JD003358.

    Article  Google Scholar 

  • Zhang, H., G. Y. Shi, T. Nakajima, et al., 2006a: The effects of the choice of the k-interval number on radiative calculations. J. Quant. Spectro. Rad. Trans., 98, 31–43, doi: 10.1016/j.jqsrt.2005.05.090.

    Article  Google Scholar 

  • Zhang, H., T. Suzuki, T. Nakajima, et al., 2006b: Effects of band division on radiative calculations. Opt. Eng., 45, 016002, doi: 10.1117/1.2160521.

    Article  Google Scholar 

  • Zhang, H., J. Peng, X. W. Jing, et al., 2013: The features of cloud overlapping in eastern Asia and their effect on cloud radiative forcing. Sci. China Earth Sci., 56, 737–747, doi: 10.1007/s11430-012-4489-x.

    Article  Google Scholar 

  • Zhang, H., X. Jing, and J. Li, 2014: Application and evaluation of a new radiation code under McICA scheme in BCC_AG CM2.0.1. Geosci. Model Dev., 7, 737–754, doi: 10.5194/gmd-7-737-2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Additional information

Supported by the National Key Research and Development Program of China (2017YFA0603502), (Key) National Natural Science Foundation of China (91644211 and 41375080), and China Meteorological Administration Special Public Welfare Research Fund (GYHY201406023).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, X., Zhang, H., Satoh, M. et al. Improving Representation of Tropical Cloud Overlap in GCMs Based on Cloud-Resolving Model Data. J Meteorol Res 32, 233–245 (2018). https://doi.org/10.1007/s13351-018-7095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7095-9

Key words

Navigation