Skip to main content
Log in

Investigation into the Formation, Structure, and Evolution of an EF4 Tornado in East China Using a High-Resolution Numerical Simulation

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Devastating tornadoes in China have received growing attention in recent years, but little is known about their formation, structure, and evolution on the tornadic scale. Most of these tornadoes develop within the East Asian monsoon regime, in an environment quite different from tornadoes in the U.S. In this study, we used an idealized, highresolution (25-m grid spacing) numerical simulation to investigate the deadly EF4 (Enhanced Fujita scale category 4) tornado that occurred on 23 June 2016 and claimed 99 lives in Yancheng, Jiangsu Province. A tornadic supercell developed in the simulation that had striking similarities to radar observations. The violent tornado in Funing County was reproduced, exceeding EF4 (74 m s–1), consistent with the on-site damage survey. It was accompanied by a funnel cloud that extended to the surface, and exhibited a double-helix vorticity structure. The signal of tornado genesis was found first at the cloud base in the pressure perturbation field, and then developed both upward and downward in terms of maximum vertical velocity overlapping with the intense vertical vorticity centers. The tornado’s demise was found to accompany strong downdrafts overlapping with the intense vorticity centers. One of the interesting findings of this work is that a violent surface vortex was able to be generated and maintained, even though the simulation employed a free-slip lower boundary condition. The success of this simulation, despite using an idealized numerical approach, provides a means to investigate more historical tornadoes in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkins, N. T., K. M. Butler, K. R. Flynn, et al., 2014: An integrated damage, visual, and radar analysis of the 2013 Moore, Oklahoma, EF5 tornado. Bull. Amer. Meteor. Soc., 95, 1549–1561, doi: 10.1175/BAMS-D-14-00033.1.

    Article  Google Scholar 

  • Bai, L. Q., Z. Y. Meng, L. Huang, et al., 2017: Integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 Tornado in China produced by the landfalling Typhoon Mujigae (2015). Bull. Amer. Meteor. Soc., 98, 2619–2640, doi: 10.1175/BAMS-D-16-0015.1.

    Article  Google Scholar 

  • Bodine, D. J., T. Maruyama, R. D. Palmer, et al., 2016: Sensitivity of tornado dynamics to soil debris loading. J. Atmos. Sci., 73, 2783–2801, doi: 10.1175/JAS-D-15-0188.1.

    Article  Google Scholar 

  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 2917–2928, doi: 10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    Article  Google Scholar 

  • Clark, A. J., J. S. Kain, P. T. Marsh, et al., 2012: Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 1090–1113, doi: 10.1175/WAF-D-11-00147.1.

    Article  Google Scholar 

  • Clark, A. J., J. D. Gao, P. T. Marsh, et al., 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387–407, doi: 10.1175/WAFD-12-00038.1.

    Article  Google Scholar 

  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149–180, doi: 10.1175/MWR-D-16-0226.1.

    Article  Google Scholar 

  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274–291, doi: 10.1016/j.atmosres.2014.04.007.

    Article  Google Scholar 

  • Davies-Jones, R., and P. Markowski, 2013: Lifting of ambient air by density currents in sheared environments. J. Atmos. Sci., 70, 1204–1215, doi: 10.1175/JAS-D-12-0149.1.

    Article  Google Scholar 

  • Ek, M. B., K. E. Mitchell, Y. Lin, et al., 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi: 10.1029/2002JD003296.

    Article  Google Scholar 

  • French, M. M., H. B. Bluestein, I. PopStefanija, et al., 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 4576–4601, doi: 10.1175/MWR-D-12-00315.1.

    Article  Google Scholar 

  • Grasso, L. D., and W. R. Cotton, 1995: Numerical simulation of a tornado vortex. J. Atmos. Sci., 52, 1192–1203, doi: 10.1175/1520-0469(1995)052<1192:NSOATV>2.0.CO;2.

    Article  Google Scholar 

  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339, doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    Article  Google Scholar 

  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2016: A finescale radar examination of the tornadic debris signature and weakecho reflectivity band associated with a large, violent tornado. Mon. Wea. Rev., 144, 4101–4130, doi: 10.1175/MWR-D-15-0408.1.

    Article  Google Scholar 

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, et al., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi: 10.1029/2008JD009944.

    Article  Google Scholar 

  • Kain, J. S., 2004: The Kain Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    Article  Google Scholar 

  • Kain, J. S., S. J. Weiss, D. R. Bright, et al., 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931–952, doi: 10.1175/WAF2007106.1.

    Article  Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 1097–1110, doi: 10.1175/1520-0469(1978)035<1097:SORALM>2.0.CO;2.

    Article  Google Scholar 

  • Klemp, J. B., R. B. Wilhelmson, and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38, 1558–1580, doi: 10.1175/1520-0469(1981)038<1558:OANSSO>2.0.CO;2.

    Article  Google Scholar 

  • Lim, K. S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612, doi: 10.1175/2009MWR2968.1.

    Article  Google Scholar 

  • Markowski, P. M., 2016: An idealized numerical simulation investigation of the effects of surface drag on the development of near-surface vertical vorticity in supercell thunderstorms. J. Atmos. Sci., 73, 4349–4385, doi: 10.1175/JAS-D-16-0150.1.

    Article  Google Scholar 

  • Markowski, P. M., and Y. P. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 3–10, doi: 10.1016/j.atmosres.2008.09.015.

    Article  Google Scholar 

  • Markowski, P. M., and G. H. Bryan, 2016: LES of laminar flow in the PBL: A potential problem for convective storm simulations. Mon. Wea. Rev., 144, 1841–1850, doi: 10.1175/MWRD-15-0439.1.

    Article  Google Scholar 

  • Markowski, P. M., and Y. P. Richardson, 2017: Large sensitivity of near-surface vertical vorticity development to heat sink location in idealized simulations of supercell-like storms. J. Atmos. Sci., 74, 1095–1104, doi: 10.1175/JAS-D-16-0372.1.

    Article  Google Scholar 

  • Markowski, P., Y. Richardson, and G. Bryan, 2014: The origins of vortex sheets in a simulated supercell thunderstorm. Mon. Wea. Rev., 142, 3944–3954, doi: 10.1175/MWR-D-14-00162.1.

    Article  Google Scholar 

  • Meng, Z. Y., and D. Yao, 2014: Damage survey, radar, and environment analyses on the first-ever documented tornado in Beijing during the heavy rainfall event of 21 July 2012. Wea. Forecasting, 29, 702–724, doi: 10.1175/WAF-D-13-00052.1.

    Article  Google Scholar 

  • Meng, Z. Y., D. Yao, L. Q. Bai, et al., 2016: Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations. Sci. Bull., 61, 330–337, doi: 10.1007/s11434-016-1005-2.

    Article  Google Scholar 

  • Naylor, J., and M. S. Gilmore, 2014: Vorticity evolution leading to tornadogenesis and tornadogenesis failure in simulated supercells. J. Atmos. Sci., 71, 1201–1217, doi: 10.1175/JAS-D-13-0219.1.

    Article  Google Scholar 

  • Naylor, J., M. A. Askelson, and M. S. Gilmore, 2012: Influence of low-level thermodynamic structure on the downdraft properties of simulated supercells. Mon. Wea. Rev., 140, 2575–2589, doi: 10.1175/MWR-D-11-00200.1.

    Article  Google Scholar 

  • Nowotarski, C. J., P. M. Markowski, Y. P. Richardson, et al., 2014: Properties of a simulated convective boundary layer in an idealized supercell thunderstorm environment. Mon. Wea. Rev., 142, 3955–3976, doi: 10.1175/MWR-D-13-00349.1.

    Article  Google Scholar 

  • Orf, L., R. Wilhelmson, B. Lee, et al., 2017: Evolution of a longtrack violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 45–68, doi: 10.1175/BAMS-D-15-00073.1.

    Article  Google Scholar 

  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530–535, doi: 10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    Article  Google Scholar 

  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 1148–1164, doi: 10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    Article  Google Scholar 

  • Roberts, B., M. Xue, A. D. Schenkman, et al., 2016: The role of surface drag in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 73, 3371–3395, doi: 10.1175/JASD-15-0332.1.

    Article  Google Scholar 

  • Rotunno, R., 2013: The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech., 45, 59–84, doi: 10.1146/annurev-fluid-011212-140639.

    Article  Google Scholar 

  • Rotunno, R., P. M. Markowski, and G. H. Bryan, 2017: “Near ground” vertical vorticity in supercell thunderstorm models. J. Atmos. Sci., 74, 1757–1766, doi: 10.1175/JAS-D-16-0288.1.

    Article  Google Scholar 

  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130–154, doi: 10.1175/JAS-D-13-073.1.

    Article  Google Scholar 

  • Stensrud, D. J., L. J. Wicker, M. Xue, et al., 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 2–16, doi: 10.1016/j.atmosres.2012.04.004.

    Article  Google Scholar 

  • Sun, J. Z., M. Xue, J. W. Wilson, et al., 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409–426, doi: 10.1175/BAMS-D-11-00263.1.

    Article  Google Scholar 

  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 1452–1472, doi: 10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.

    Article  Google Scholar 

  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 2675–2703, doi: 10.1175/1520-0469(1995)0522<2675:SAAOTD>2.0.CO;2.

    Article  Google Scholar 

  • Wurman, J., D. Dowell, Y. Richardson, et al., 2012: The second verification of the origins of rotation in tornadoes experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 1147–1170, doi: 10.1175/BAMS-D-11-00010.1.

    Article  Google Scholar 

  • Wurman, J., K. Kosiba, and P. Robinson, 2013: In situ, Doppler radar, and video observations of the interior structure of a tornado and the wind-damage relationship. Bull. Amer. Meteor. Soc., 94, 835–846, doi: 10.1175/BAMS-D-12-00114.1.

    Article  Google Scholar 

  • Xue, M., M. Hu, and A. D. Schenkman, 2014: Numerical prediction of the 8 May 2003 Oklahoma City tornadic supercell and embedded tornado using ARPS with the assimilation of WSR-88D Data. Wea. Forecasting, 29, 39–62, doi: 10.1175/WAF-D-13-00029.1.

    Article  Google Scholar 

  • Xue, M., K. Zhao, M. J. Wang, et al., 2016: Recent significant tornadoes in China. Adv. Atmos. Sci., 33, 1209–1217, doi: 10.1007/s00376-016-6005-2.

    Article  Google Scholar 

  • Yao, Y. Q., X. D. Yu, Y. J. Zhang, et al., 2015: Climate analysis of tornadoes in China. J. Meteor. Res., 29, 359–369, doi: 10.1007/s13351-015-4983-0.

    Article  Google Scholar 

  • Zhao, K., M. J. Wang, M. Xue, et al., 2017: Doppler radar analysis of a tornadic miniature supercell during the landfall of Typhoon Mujigae (2015) in South China. Bull. Amer. Meteor. Soc., 98, 1821–1831, doi: 10.1175/BAMS-D-15-00301.1.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Yuqing Wang from the University of Hawaii, Prof. Dalin Zhang from the University of Maryland, and Prof. Yali Luo from the Chinese Academy of Meteorological Sciences (CAMS), for their instructive suggestions in revising this manuscript. We are also appreciative of the assistance of Drs. Hongli Wang and Ying Liu from CAMS, and Dr. Lin Zhang from the Meteorological Observation Center of China. Dr. Dan Yao is especially grateful to his Ph.D. degree supervisor, Prof. Zhiyong Meng from Peking University, who guided him onto the road of tornado damage survey and numerical simulation research. The editor and two anonymous reviewers are sincerely thanked for their instructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haile Xue.

Additional information

Supported by the National Natural Science Foundation of China (41705028, 41405095, and 41405006) and Basic Research Fund of the Chinese Academy of Meteorological Sciences [2017Y018, 2015Z003, and 2017Z017 (2017LASW-A02)].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, D., Xue, H., Yin, J. et al. Investigation into the Formation, Structure, and Evolution of an EF4 Tornado in East China Using a High-Resolution Numerical Simulation. J Meteorol Res 32, 157–171 (2018). https://doi.org/10.1007/s13351-018-7083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7083-0

Key words

Navigation