Skip to main content
Log in

Comparison of Two Air Pollution Episodes over Northeast China in Winter 2016/17 Using Ground-Based Lidar

  • Special Collection on the Heavy and Persistent Haze-Fog Episodes in Winter 2016/17 in the Beijing-Tianjin-Hebei Area of China
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This study analyzes and compares aerosol properties and meteorological conditions during two air pollution episodes in 19–22 (E1) and 25–26 (E2) December 2016 in Northeast China. The visibility, particulate matter (PM) mass concentration, and surface meteorological observations were examined, together with the planetary boundary layer (PBL) properties and vertical profiles of aerosol extinction coefficient and volume depolarization ratio that were measured by a ground-based lidar in Shenyang of Liaoning Province, China during December 2016–January 2017. Results suggest that the low PBL height led to poor pollution dilution in E1, while the high PBL accompanied by low visibility in E2 might have been due to cross-regional and vertical air transmission. The PM mass concentration decreased as the PBL height increased in E1 while these two variables were positively correlated in E2. The enhanced winds in E2 diffused the pollutants and contributed largely to the aerosol transport. Strong temperature inversion in E1 resulted in increased PM2.5 and PM10 concentrations, and the winds in E2 favoured the southwesterly transport of aerosols from the North China Plain into the region surrounding Shenyang. The large extinction coefficient was partially attributed to the local pollution under the low PBL with high ground-surface PM mass concentrations in E1, whereas the cross-regional transport of aerosols within a high PBL and the low PM mass concentration near the ground in E2 were associated with severe aerosol extinction at high altitudes. These results may facilitate better understanding of the vertical distribution of aerosol properties during winter pollution events in Northeast China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansmann, A., R. Engelmann, D. Althausen, et al., 2005: High aerosol load over the Pearl River Delta, China, observed with Raman lidar and Sun photometer. Geophys. Res. Lett., 32, L13815, doi: 10.1029/2005GL023094.

    Article  Google Scholar 

  • Chan, Y. C., R. W. Simpson, G. H. Mctainsh, et al., 1999: Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmos. Environ., 33, 3237–3250, doi: 10.1016/S1352-2310(99)00091-6.

    Article  Google Scholar 

  • Che, H. Z., X. G. Xia, J. Zhu, et al., 2015: Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China. Environ. Sci. Pollut. Res., 22, 1043–1053, doi: 10.1007/s11356-014-3415-5.

    Article  Google Scholar 

  • Cheng, Z., S. X. Wang, J. K. Jiang, et al., 2013: Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China. Environ. Pollut., 182, 101–110, doi: 10.1016/j.envpol.2013.06.043.

    Article  Google Scholar 

  • Cottle, P., K. Strawbridge, and I. McKendry, 2014: Long-range transport of Siberian wildfire smoke to British Columbia: Lidar observations and air quality impacts. Atmos. Environ., 90, 71–77, doi: 10.1016/j.atmosenv.2014.03.005.

    Article  Google Scholar 

  • Deng, J. J., T. J. Wang, Z. Q. Jiang, et al., 2011: Characterization of visibility and its affecting factors over Nanjing, China. Atmos. Res., 101, 681–691, doi: 10.1016/j.atmosres.2011.04.016.

    Article  Google Scholar 

  • Elias, T., M. Haeffelin, P. Drobinski, et al., 2009: Particulate contribution to extinction of visible radiation: Pollution, haze, and fog. Atmos. Res., 92, 443–454, doi: 10.1016/j.atmosres.2009.01.006.

    Article  Google Scholar 

  • Emeis, S., R. Forkel, W. Junkermann, et al., 2011: Measurement and simulation of the 16/17 April 2010 Eyjafjallajökull volcanic ash layer dispersion in the northern Alpine region. Atmos. Chem. Phys., 11, 2689–2701, doi: 10.5194/acp-11-2689-2011.

    Article  Google Scholar 

  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652–653, doi: 10.1364/AO.23.000652.

    Article  Google Scholar 

  • Gao, Y., M. Zhang, Z. Liu, et al., 2015: Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog–haze event over the North China Plain. Atmos. Chem. Phys., 15, 4279–4295, doi: 10.5194/acp-15-4279-2015.

    Article  Google Scholar 

  • Guinot, B., J.-C. Roger, H. Cachier, et al., 2006: Impact of vertical atmospheric structure on Beijing aerosol distribution. Atmos. Environ., 40, 5167–5180, doi: 10.1016/j.atmosenv.2006.03.051.

    Article  Google Scholar 

  • Hänel, A., H. Baars, D. Althausen, et al., 2012: One-year aerosol profiling with EUCAARI Raman lidar at Shangdianzi GAW station: Beijing plume and seasonal variations. J. Geophys. Res., 117, D13201, doi: 10.1029/2012JD017577.

    Article  Google Scholar 

  • He, G. X., C. W. F. Yu, C. Lu, et al., 2013: The influence of synoptic pattern and atmospheric boundary layer on PM10 and urban heat island. Indoor Built Environ., 22, 796–807, doi: 10.1177/1420326X13503576.

    Article  Google Scholar 

  • Hu, X. M., Z. Q. Ma, W. L. Lin, et al., 2014: Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study. Sci. Total Environ., 499, 228–237, doi: 10.1016/j.scitotenv.2014.08.053.

    Article  Google Scholar 

  • Ji, D. S., L. Li, Y. S. Wang, et al., 2014: The heaviest particulate air-pollution episodes that occurred in northern China in January 2013: Insights gained from observation. Atmos. Environ., 92, 546–556, doi: 10.1016/j.atmosenv.2014.04.048.

    Article  Google Scholar 

  • Jiang, C., H. Wang, T. Zhao, et al., 2015: Modeling study of PM2.5 pollutant transport across cities in China’s Jing–Jin–Ji region during a severe haze episode in December 2013. Atmos. Chem. Phys., 15, 5803–5814, doi: 10.5194/acpd-15-3745-2015.

    Article  Google Scholar 

  • Kim, Y. J., K. W. Kim, S. D. Kim, et al., 2006: Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmos. Environ., 40, 593–605, doi: 10.1016/j.atmosenv.2005.11.076.

    Article  Google Scholar 

  • Kompalli, S. K., S. S. Babu, K. K. Moorthy, et al., 2014: Aerosol black carbon characteristics over central India: Temporal variation and its dependence on mixed layer height. Atmos. Res., 147–148, 27–37, doi: 10.1016/j.atmosres.2014.04.015.

    Article  Google Scholar 

  • Li, M., G. Q. Tang, J. Huang, et al., 2015: Characteristics of winter atmospheric mixing layer height in Beijing–Tianjin–Hebei region and their relationship with the atmospheric pollution. Environ. Sci., 36, 1935–1943, doi: 10.13227/j.hjkx.2015.06.004. (in Chinese)

    Google Scholar 

  • Liu, H. N., W. L. Ma, J. L. Qian, et al., 2015: Effect of urbanization on the urban meteorology and air pollution in Hangzhou. J. Meteor. Res., 29, 950–965, doi: 10.1007/s13351-015-5013-y.

    Article  Google Scholar 

  • Liu, Q., Y. Wang, Z. Y. Kuang, et al., 2016: Vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai. J. Meteor. Res., 30, 598–613, doi: 10.1007/s13351-016-5092-4.

    Article  Google Scholar 

  • Molnár, A., E. Mészáros, K. Imre, et al., 2008: Trends in visibility over Hungary between 1996 and 2002. Atmos. Environ., 42, 2621–2629, doi: 10.1016/j.atmosenv.2007.05.012.

    Article  Google Scholar 

  • Oleniacz, R., M. Bogacki, A. Szulecka, et al., 2016: Assessing the impact of wind speed and mixing-layer height on air quality in Krakow (Poland) in the years 2014–2015. J. Civ. Eng. Environ. Arch., 63, 315–342, doi: 10.7862/rb.2016.168.

    Google Scholar 

  • Qin, K., L. X. Wu, M. S. Wong, et al., 2016: Trans-boundary aerosol transport during a winter haze episode in China revealed by ground-based lidar and CALIPSO satellite. Atmos. Environ., 141, 20–29, doi: 10.1016/j.atmosenv.2016.06.042.

    Article  Google Scholar 

  • Quan, J. N., Y. Gao, Q. Zhang, et al., 2013: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11, 34–40, doi: 10.1016/j.partic.2012.04.005.

    Article  Google Scholar 

  • Quan, J. N., X. X. Tie, Q. Zhang, et al., 2014: Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmos. Environ., 88, 83–89, doi: 10.1016/j.atmosenv.2014.01.058.

    Article  Google Scholar 

  • Revuelta, M. A., M. Sastre, A. J. Fernández, et al., 2012: Characterization of the Eyjafjallajökull volcanic plume over the Iberian Peninsula by lidar remote sensing and ground-level data collection. Atmos. Environ., 48, 46–55, doi: 10.1016/j.atmosenv.2011.05.033.

    Article  Google Scholar 

  • Schichtel, B. A., R. B. Husar, S. R. Falke, et al., 2001: Haze trends over the United States, 1980–1995. Atmos. Environ., 35, 5205–5210, doi: 10.1016/S1352-2310(01)00317-X.

    Article  Google Scholar 

  • Sugimoto, N., T. Nishizawa, A. Shimizu, et al., 2015: Detection of internally mixed Asian dust with air pollution aerosols using a polarization optical particle counter and a polarization-sensit-ive two-wavelength lidar. J. Quant. Spectros. Radiat. Transf., 150, 107–113, doi: 10.1016/j.jqsrt.2014.08.003.

    Article  Google Scholar 

  • Sun, Y., T. Song, G. Q. Tang, et al., 2013: The vertical distribution of PM2.5 and boundary-layer structure during summer haze in Beijing. Atmos. Environ., 74, 413–421, doi: 10.1016/j.atmosenv.2013.03.011.

    Article  Google Scholar 

  • Sun, Y. L., Q. Jiang, Z. F. Wang, et al., 2014: Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J. Geophys. Res., 119, 4380–4398, doi: 10.1002/2014JD021641.

    Google Scholar 

  • Sun, Y. W., X. H. Zhou, K. M. Wai, et al., 2013: Simultaneous measurement of particulate and gaseous pollutants in an urban city in North China Plain during the heating period: Implication of source contribution. Atmos. Res., 134, 24–34, doi: 10.1016/j.atmosres.2013.07.011.

    Article  Google Scholar 

  • Tang, G., X. Zhu, B. Hu, et al., 2015: Impact of emission controls on air quality in Beijing during APEC 2014: Lidar ceilometer observations. Atmos. Chem. Phys., 15, 12667–12680, doi: 10.5194/acp-15-12667-2015.

    Article  Google Scholar 

  • Tang, G. Q., J. Q. Zhang, X. W. Zhu, et al., 2016: Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys., 16, 2459–2475, doi: 10.5194/acp-16-2459-2016.

    Article  Google Scholar 

  • Tesche, M., A. Ansmann, D. Müller, et al., 2007: Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in South and North China. Appl. Opt., 46, 6302–6308, doi: 10.1364/AO.46.006302.

    Article  Google Scholar 

  • Tie, X. X., and J. J. Cao, 2009: Aerosol pollution in China: Present and future impact on environment. Particuology, 7, 426–431, doi: 10.1016/j.partic.2009.09.003.

    Article  Google Scholar 

  • Uno, I., N. Sugimoto, A. Shimizu, et al., 2014: Record heavy PM2.5 air pollution over China in January 2013: Vertical and horizontal dimensions. SOLA, 10, 136–140, doi: 10.2151/sola.2014-028.

    Article  Google Scholar 

  • Wang, Y. S., L. Yao, L. L. Wang, et al., 2014: Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci., 57, 14–25, doi: 10.1007/s11430-013-4773-4.

    Article  Google Scholar 

  • Wu, Y. H., L. Cordero, B. Gross, et al., 2012: Smoke plume optical properties and transport observed by a multi-wavelength lidar, sunphotometer and satellite. Atmos. Environ., 63, 32–42, doi: 10.1016/j.atmosenv.2012.09.016.

    Article  Google Scholar 

  • Yang, X., C. F. Zhao, L. J. Zhou, et al., 2016a: Distinct impact of different types of aerosols on surface solar radiation in China. J. Geophys. Res. Atmos., 121, 6459–6471, doi: 10.1002/2016JD024938.

    Article  Google Scholar 

  • Yang, X., C. F. Zhao, J. P. Guo, et al., 2016b: Intensification of aerosol pollution associated with its feedback with surface solar radiation and winds in Beijing. J. Geophys. Res. Atmos., 121, 4093–4099, doi: 10.1002/2015JD024645.

    Article  Google Scholar 

  • Yue, D. L., M. Hu, Z. J. Wu, et al., 2010: Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes. Atmos. Chem. Phys., 10, 9431–9439, doi: 10.5194/acp-10-9431-2010.

    Article  Google Scholar 

  • Zhang, J. K., Y. Sun, Z. R. Liu, et al., 2014: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmos. Chem. Phys., 14, 2887–2903, doi: 10.5194/acp-14-2887-2014.

    Article  Google Scholar 

  • Zhang, Q., X. C. Ma, X. X. Tie, et al., 2009: Vertical distributions of aerosols under different weather conditions: Analysis of insitu aircraft measurements in Beijing, China. Atmos. Environ., 43, 5526–5535, doi: 10.1016/j.atmosenv.2009.05.037.

    Article  Google Scholar 

  • Zhang, X. Y., Y. Q. Wang, T. Niu, et al., 2012: Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys., 12, 779–799, doi: 10.5194/acp-12-779-2012.

    Article  Google Scholar 

  • Zhang, Y. W., Q. Zhang, C. P. Leng, et al., 2015: Evolution of aerosol vertical distribution during particulate pollution events in Shanghai. J. Meteor. Res., 29, 385–399, doi: 10.1007/s13351-014-4089-0.

    Article  Google Scholar 

  • Zhao, C. F., Y. Z. Wang, Q. Q. Wang, et al., 2014: A new cloud and aerosol layer detection method based on micropulse lidar measurements. J. Geophys. Res., 119, doi: 10.1002/2014JD021760.

  • Zhao, H. J., H. Z. Che, X. Y. Zhang, et al., 2013: Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmos. Pollut. Res., 4, 427–434, doi: 10.5094/APR.2013.049.

    Article  Google Scholar 

  • Zheng, C. W., C. F. Zhao, Y. N. Zhu, et al., 2017: Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing. Atmos. Chem. Phys., 17, 13473–13489, doi: 10.5194/acp-2016-1170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huizheng Che.

Additional information

Supported by the National Key Research and Development Program of China (2016YFC0203304 and 2016YFA0601901), National Natural Science Foundation of China (41605112, 41590874, 41375153, and 41375146), Chinese Academy of Meteorological Sciences Basic Research Fund (2017Z011, 2016Z001, and 2014R17), Climate Change Special Fund of China Meteorological Administration (CCSF201504), and Special Project for Doctoral Research of Liaoning Provincial Meteorological Bureau (D201501).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhao, H., Dong, Y. et al. Comparison of Two Air Pollution Episodes over Northeast China in Winter 2016/17 Using Ground-Based Lidar. J Meteorol Res 32, 313–323 (2018). https://doi.org/10.1007/s13351-018-7047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7047-4

Key words

Navigation