Abstract
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.
Similar content being viewed by others
References
Alexander M. A., I. Bladé, M. Newman, et al., 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.
Bergman J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air–sea interactions at the onset of El Niño. J. Climate, 14, 1702–1719, doi: 10.1175/1520-0442(2001)014<1702:IASIAT>2.0.CO;2.
Chang P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516–518, doi: 10.1038/385516a0.
Chang P., Y. Fang, R. Saravanan, et al., 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324–328, doi: 10.1038/nature05053.
Chen X., J. Ling, and C. Y. Li, 2015: Evolution of the Madden–Julian Oscillation in two types of El Niño. J. Climate, 29, 1919–1934, doi: 10.1175/JCLI-D-15-0486.1.
Chiang J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 2616–2631, doi: 10.1175/15200442(2002)015<2616:TTTVCB>2.0.CO;2.
Chiodi A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden–Julian Oscillation and westerly wind events. J. Climate, 27, 3619–3642, doi: 10.1175/JCLI-D-13-00547.1.
Ding H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño–Southern Oscillation. Climate Dyn., 38, 1965–1972, doi: 10.1007/s00382-011-1097-y.
Ding Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483–3505, doi: 10.1175/JCLI3473.1.
Ding R. Q., J. P. Li, Y.-H. Tseng, et al., 2017: Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Climate Dyn., 49, 1321–1339, doi: 10.1007/ s00382-016-3389-8.
Dommenget D., V. Semenov, and M. Latif, 2006: Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys. Res. Lett., 33, L11701, doi: 10.1029/2006GL025871.
Enfield D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929–945, doi: 10.1029/96JC03296.
Feng J., P. Liu, W. Chen, et al., 2015: Contrasting Madden–Julian Oscillation activity during various stages of EP and CP El Niños. Atmos. Sci. Lett., 16, 32–37, doi: 10.1002/asl2.516.
Frauen C., and D. Dommenget, 2012: Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett., 39, L02706, doi: 10.1029/2011GL050520.
Giannini A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297–311, doi: 10.1175/1520-0442(2000)013 <0297:IVOCRE>2.0.CO;2.
Gill A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi: 10.1002/qj.49710644905.
Gu W., C. Y. Li, X. Wang, et al., 2009: Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci., 26, 101–108, doi: 10.1007/s00376-009-0101-5.
Gushchina D., and B. Dewitte, 2012: Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon. Wea. Rev., 140, 3669–3681, doi: 10.1175/MWR-D-11-00267.1.
Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013b: Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett., 40, 4012–4017, doi: 10.1002/grl.50729.
Ham, Y.-G., J.-S. Kug, J.-Y. Park, et al., 2013a: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112–116, doi: 10.1038/ngeo1686.
Ham, Y.-G., and J.-S. Kug, 2015: Role of north tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dyn., 45, 3103–3117, doi: 10.1007/s00382-015-2527-z.
Hendon H. H., M. C. Wheeler, and C. D. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531–543, doi: 10.1175/JCLI4003.1.
Hoell A., M. Barlow, M. C. Wheeler, et al., 2014: Disruptions of El Niño–Southern Oscillation teleconnections by the Madden–Julian Oscillation. Geophys. Res. Lett., 41, 998–1004, doi: 10.1002/2013GL058648.
Hu C. D., S. Yang, Q. G. Wu, et al., 2016: Reinspecting two types of El Niño: A new pair of Niño indices for improving realtime ENSO monitoring. Climate Dyn., 47, 4031–4049, doi: 10.1007/s00382-016-3059-x.
Huang B., 2004: Remotely forced variability in the tropical Atlantic Ocean. Climate Dyn., 23, 133–152, doi: 10.1007/s00382-004-0443-8.
Jansen M. F., D. Dommenget, and N. Keenlyside, 2009: Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate, 22, 550–567, doi: 10.1175/2008JCLI2243.1.
Kalnay E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Kessler W. S., 2001: EOF representations of the Madden–Julian Oscillation and its connection with ENSO. J. Climate, 14, 3055–3061, doi: 10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2.
Kessler W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian Oscillation into the ENSO cycle. J. Climate, 13, 3560–3575, doi: 10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.
Kikuchi K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 1989–2000, doi: 10.1007/s00382-011-1159-1.
Kiladis G. N., J. Dias, K. H. Straub, et al., 2013: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 1697–1715, doi: 10.1175/MWR-D-13-00301.1.
Klein S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.
Kucharski F., I.-S. Kang, R. Farneti, et al., 2011: Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett., 38, L03702, doi: 10.1029/2010GL046248.
Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Niña? Geophys. Res. Lett., 38, L16704, doi: 10.1029/2011GL048237.
Lau, W. K.-M., and D. E. Waliser, 2011: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin Heidelberg, 614 pp, doi: 10.1007/978-3-642-13914-7.
Li C. Y., J. Ling, J. Song, et al., 2014: Research progress in China on the tropical atmospheric intraseasonal oscillation. J. Meteor. Res., 28, 671–692, doi: 10.1007/s13351-014-4015-5.
Li T., 2014: Recent advance in understanding the dynamics of the Madden–Julian Oscillation. J. Meteor. Res., 28, 1–33, doi: 10.1007/s13351-014-3087-6.
Lin A. L., and T. Li, 2008: Energy spectrum characteristics of boreal summer intraseasonal oscillations: Climatology and variations during the ENSO developing and decaying phases. J. Climate, 21, 6304–6320, doi: 10.1175/2008JCLI2331.1.
Martín-Rey M., I. Polo, B. Rodríguez-Fonseca, et al., 2012: Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Scientia Marina, 76, 105–116, doi: 10.3989/scimar.03610.19A.
Martín-Rey M., B. Rodríguez-Fonseca, I. Polo, et al., 2014: On the Atlantic–Pacific Niños connection: A multidecadal modulated mode. Climate Dyn., 43, 3163–3178, doi: 10.1007/s00382-014-2305-3.
Matsuno T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43, doi: 10.2151/jmsj1965. 44.1_25.
McPhaden M. J., X. B. Zhang, H. H. Hendon, et al., 2006: Large scale dynamics and MJO forcing of ENSO variability. Geophys. Res. Lett., 33, L16702, doi: 10.1029/2006GL026786.
Mo K. C., and S. Häkkinen, 2001: Interannual variability in the tropical Atlantic and linkages to the Pacific. J. Climate, 14, 2740–2762, doi: 10.1175/1520-0442(2001)014<2740:IVITTA>2.0.CO;2.
Newman M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22, 2958–2977, doi: 10.1175/2008JCLI2659.1.
Penland C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11, 483–496, doi: 10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2.
Polo I., M. Martin-Rey, B. Rodriguez-Fonseca, et al., 2015: Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Climate Dyn., 44, 115–131, doi: 10.1007/s00382-014-2354-7.
Puy M., J. Vialard, M. Lengaigne, et al., 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian Oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 2155–2178, doi: 10.1007/s00382-015-2695-x.
Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010GL046031.
Rodríguez-Fonseca B., I. Polo, J. García-Serrano, et al., 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, doi: 10.1029/2009GL040048.
Saravanan R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13, 2177–2194, doi: 10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2.
Sasaki W., T. Doi, K. J. Richards, et al., 2014: Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Climate Dyn., 43, 2539–2552, doi: 10.1007/s00382-014-2072-1.
Seiki A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 3325–3345, doi: 10.1175/MWR3477.1.
Seiki A., Y. N. Takayabu, K. Yoneyama, et al., 2009: The oceanic response to the Madden–Julian Oscillation and ENSO. SOLA, 5, 93–96, doi: 10.2151/sola.2009-024.
Seo, K.-H., and Y. Xue, 2005: MJO-related oceanic Kelvin waves and the ENSO cycle: A study with the NCEP global ocean data assimilation system. Geophys. Res. Lett., 32, L07712, doi: 10.1029/2005GL022511.
Shinoda T., H. E. Hurlburt, and E. J. Metzger, 2011: Anomalous tropical ocean circulation associated with La Niña Modoki. J. Geophys. Res., 116, C12001, doi: 10.1029/2011JC007304.
Smith T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, doi: 10.1175/2007JCLI2100.1.
Tang Y. M., and B. Yu, 2008a: MJO and its relationship to ENSO. J. Geophys. Res., 113, D14106, doi: 10.1029/2007JD009230.
Tang Y. M., and B. Yu, 2008b: An analysis of nonlinear relationship between the MJO and ENSO. J. Meteor. Soc. Japan, 86, 867–881, doi: 10.2151/jmsj.86.867.
Timmermann A., Y. Okumura, S.-I. An, et al., 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 4899–4919, doi: 10.1175/JCLI4283.1.
Uvo C. B., C. A. Repelli, S. E. Zebiak, et al., 1998: The relationships between tropical Pacific and Atlantic SST and Northeast Brazil monthly precipitation. J. Climate, 11, 551–562, doi: 10.1175/15200442(1998)011<0551:TRBTPA>2.0.CO;2.
Wang C. Z., S.-K. Lee, and C. R. Mechoso, 2010: Interhemispheric influence of the Atlantic warm pool on the southeastern Pacific. J. Climate, 23, 404–418, doi: 10.1175/2009JCLI3127.1.
Wheeler M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932, doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.
Wiedermann M., A. Radebach, J. F. Donges, et al., 2016: A climate network-based index to discriminate different types of El Niño and La Niña. Geophys. Res. Lett., 43, 7176–7185, doi: 10.1002/2016GL069119.
Wright P. B., 1986: Precursors of the Southern Oscillation. Int. J. Climatol., 6, 17–30, doi: 10.1002/joc.3370060103.
Wu Z. W., J. P. Li, Z. H. Jiang, et al., 2012: Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian Summer monsoon and ENSO. Int. J. Climatol., 32, 794–800, doi: 10.1002/joc.2309.
Xue Y., W. Higgins, and V. Kousky, 2002: Influences of the Madden–Julian Oscillation on temperature and precipitation in North America during ENSO-neutral and weak ENSO winters. Proc. Workshop on Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal Time Scales, Mitchellville, MD, NASA Goddard Space Flight Center, 4–4.
Xue Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 1601–1612, doi: 10.1175/1520-0442-16.10.1601.
Yan X., and J. H. Ju, 2016: Analysis of the major characteristics of persistent MJO anomalies in summer. Chinese J. Atmos. Sci., 40, 1048–1058, doi: 10.3878/j.issn.1006-9895.1601.15248. (in Chinese)
Yan X., J. H. Ju, and W. W. Gan, 2016: The influence of persistent anomaly of MJO on ENSO. J. Trop. Meteor., 22, 24–36, doi: 10.16555/j.1006-8775.2016.S1.003.
Yu J. H., T. Li, Z. M. Tan, et al., 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865–877, doi: 10.1007/s00382-015-2618-x.
Zavala-Garay J., C. Zhang, A. M. Moore, et al., 2005: The linear response of ENSO to the Madden–Julian Oscillation. J. Climate, 18, 2441–2459, doi: 10.1175/JCLI3408.1.
Zavala-Garay J., C. Zhang, A. M. Moore, et al., 2008: Sensitivity of hybrid ENSO models to unresolved atmospheric variability. J. Climate, 21, 3704–3721, doi: 10.1175/2007JCLI1188.1.
Zhang C. D., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian Oscillation in the equatorial Pacific. J. Climate, 15, 2429–2445, doi: 10.1175/1520-0442(2002)015 <2429:SAOEAT>2.0.CO;2.
Zuo J. Q., W. J. Li, C. H. Sun, et al., 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 1173–1186, doi: 10.1007/s00376-012-2125-5.
Acknowledgments
The authors thank the constructive suggestions from the two anonymous reviewers, from Dr. Junmei Lyu of the Chinese Academy of Meteorological Sciences, and from Professor V. Krishnamurthy of the Geroge Mason University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation of China (41375059, 41690123, 41690120, 41661144019, and 41375081), China Meteorological Administration (CMA) Special Public Welfare Research Fund (GYHY201306022), State Key Laboratory for Severe Weather Special Fund (2016LASW-B01), and Research Fund of CMA Guangzhou Institute of Tropical and Marine Meteorology/ Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction.
Rights and permissions
About this article
Cite this article
Yan, X., Ren, J., Ju, J. et al. Influence of Springtime Atlantic SST on ENSO: Role of the Madden–Julian Oscillation. J Meteorol Res 32, 380–393 (2018). https://doi.org/10.1007/s13351-018-7046-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-018-7046-5