Skip to main content
Log in

Influence of Springtime Atlantic SST on ENSO: Role of the Madden–Julian Oscillation

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M. A., I. Bladé, M. Newman, et al., 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    Article  Google Scholar 

  • Bergman J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air–sea interactions at the onset of El Niño. J. Climate, 14, 1702–1719, doi: 10.1175/1520-0442(2001)014<1702:IASIAT>2.0.CO;2.

    Article  Google Scholar 

  • Chang P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516–518, doi: 10.1038/385516a0.

    Article  Google Scholar 

  • Chang P., Y. Fang, R. Saravanan, et al., 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324–328, doi: 10.1038/nature05053.

    Article  Google Scholar 

  • Chen X., J. Ling, and C. Y. Li, 2015: Evolution of the Madden–Julian Oscillation in two types of El Niño. J. Climate, 29, 1919–1934, doi: 10.1175/JCLI-D-15-0486.1.

    Article  Google Scholar 

  • Chiang J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 2616–2631, doi: 10.1175/15200442(2002)015<2616:TTTVCB>2.0.CO;2.

    Article  Google Scholar 

  • Chiodi A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden–Julian Oscillation and westerly wind events. J. Climate, 27, 3619–3642, doi: 10.1175/JCLI-D-13-00547.1.

    Article  Google Scholar 

  • Ding H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño–Southern Oscillation. Climate Dyn., 38, 1965–1972, doi: 10.1007/s00382-011-1097-y.

    Article  Google Scholar 

  • Ding Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483–3505, doi: 10.1175/JCLI3473.1.

    Article  Google Scholar 

  • Ding R. Q., J. P. Li, Y.-H. Tseng, et al., 2017: Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Climate Dyn., 49, 1321–1339, doi: 10.1007/ s00382-016-3389-8.

    Article  Google Scholar 

  • Dommenget D., V. Semenov, and M. Latif, 2006: Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys. Res. Lett., 33, L11701, doi: 10.1029/2006GL025871.

    Article  Google Scholar 

  • Enfield D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929–945, doi: 10.1029/96JC03296.

    Article  Google Scholar 

  • Feng J., P. Liu, W. Chen, et al., 2015: Contrasting Madden–Julian Oscillation activity during various stages of EP and CP El Niños. Atmos. Sci. Lett., 16, 32–37, doi: 10.1002/asl2.516.

    Article  Google Scholar 

  • Frauen C., and D. Dommenget, 2012: Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett., 39, L02706, doi: 10.1029/2011GL050520.

    Article  Google Scholar 

  • Giannini A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297–311, doi: 10.1175/1520-0442(2000)013 <0297:IVOCRE>2.0.CO;2.

    Article  Google Scholar 

  • Gill A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi: 10.1002/qj.49710644905.

    Article  Google Scholar 

  • Gu W., C. Y. Li, X. Wang, et al., 2009: Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci., 26, 101–108, doi: 10.1007/s00376-009-0101-5.

    Article  Google Scholar 

  • Gushchina D., and B. Dewitte, 2012: Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon. Wea. Rev., 140, 3669–3681, doi: 10.1175/MWR-D-11-00267.1.

    Article  Google Scholar 

  • Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013b: Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett., 40, 4012–4017, doi: 10.1002/grl.50729.

    Article  Google Scholar 

  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, et al., 2013a: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112–116, doi: 10.1038/ngeo1686.

    Article  Google Scholar 

  • Ham, Y.-G., and J.-S. Kug, 2015: Role of north tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dyn., 45, 3103–3117, doi: 10.1007/s00382-015-2527-z.

    Article  Google Scholar 

  • Hendon H. H., M. C. Wheeler, and C. D. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531–543, doi: 10.1175/JCLI4003.1.

    Article  Google Scholar 

  • Hoell A., M. Barlow, M. C. Wheeler, et al., 2014: Disruptions of El Niño–Southern Oscillation teleconnections by the Madden–Julian Oscillation. Geophys. Res. Lett., 41, 998–1004, doi: 10.1002/2013GL058648.

    Article  Google Scholar 

  • Hu C. D., S. Yang, Q. G. Wu, et al., 2016: Reinspecting two types of El Niño: A new pair of Niño indices for improving realtime ENSO monitoring. Climate Dyn., 47, 4031–4049, doi: 10.1007/s00382-016-3059-x.

    Article  Google Scholar 

  • Huang B., 2004: Remotely forced variability in the tropical Atlantic Ocean. Climate Dyn., 23, 133–152, doi: 10.1007/s00382-004-0443-8.

    Article  Google Scholar 

  • Jansen M. F., D. Dommenget, and N. Keenlyside, 2009: Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate, 22, 550–567, doi: 10.1175/2008JCLI2243.1.

    Article  Google Scholar 

  • Kalnay E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kessler W. S., 2001: EOF representations of the Madden–Julian Oscillation and its connection with ENSO. J. Climate, 14, 3055–3061, doi: 10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2.

    Article  Google Scholar 

  • Kessler W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian Oscillation into the ENSO cycle. J. Climate, 13, 3560–3575, doi: 10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.

    Article  Google Scholar 

  • Kikuchi K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 1989–2000, doi: 10.1007/s00382-011-1159-1.

    Article  Google Scholar 

  • Kiladis G. N., J. Dias, K. H. Straub, et al., 2013: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 1697–1715, doi: 10.1175/MWR-D-13-00301.1.

    Article  Google Scholar 

  • Klein S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    Article  Google Scholar 

  • Kucharski F., I.-S. Kang, R. Farneti, et al., 2011: Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett., 38, L03702, doi: 10.1029/2010GL046248.

    Article  Google Scholar 

  • Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Niña? Geophys. Res. Lett., 38, L16704, doi: 10.1029/2011GL048237.

    Article  Google Scholar 

  • Lau, W. K.-M., and D. E. Waliser, 2011: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin Heidelberg, 614 pp, doi: 10.1007/978-3-642-13914-7.

    Google Scholar 

  • Li C. Y., J. Ling, J. Song, et al., 2014: Research progress in China on the tropical atmospheric intraseasonal oscillation. J. Meteor. Res., 28, 671–692, doi: 10.1007/s13351-014-4015-5.

    Article  Google Scholar 

  • Li T., 2014: Recent advance in understanding the dynamics of the Madden–Julian Oscillation. J. Meteor. Res., 28, 1–33, doi: 10.1007/s13351-014-3087-6.

    Google Scholar 

  • Lin A. L., and T. Li, 2008: Energy spectrum characteristics of boreal summer intraseasonal oscillations: Climatology and variations during the ENSO developing and decaying phases. J. Climate, 21, 6304–6320, doi: 10.1175/2008JCLI2331.1.

    Article  Google Scholar 

  • Martín-Rey M., I. Polo, B. Rodríguez-Fonseca, et al., 2012: Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Scientia Marina, 76, 105–116, doi: 10.3989/scimar.03610.19A.

    Article  Google Scholar 

  • Martín-Rey M., B. Rodríguez-Fonseca, I. Polo, et al., 2014: On the Atlantic–Pacific Niños connection: A multidecadal modulated mode. Climate Dyn., 43, 3163–3178, doi: 10.1007/s00382-014-2305-3.

    Article  Google Scholar 

  • Matsuno T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43, doi: 10.2151/jmsj1965. 44.1_25.

    Article  Google Scholar 

  • McPhaden M. J., X. B. Zhang, H. H. Hendon, et al., 2006: Large scale dynamics and MJO forcing of ENSO variability. Geophys. Res. Lett., 33, L16702, doi: 10.1029/2006GL026786.

    Article  Google Scholar 

  • Mo K. C., and S. Häkkinen, 2001: Interannual variability in the tropical Atlantic and linkages to the Pacific. J. Climate, 14, 2740–2762, doi: 10.1175/1520-0442(2001)014<2740:IVITTA>2.0.CO;2.

    Article  Google Scholar 

  • Newman M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22, 2958–2977, doi: 10.1175/2008JCLI2659.1.

    Article  Google Scholar 

  • Penland C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11, 483–496, doi: 10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2.

    Article  Google Scholar 

  • Polo I., M. Martin-Rey, B. Rodriguez-Fonseca, et al., 2015: Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Climate Dyn., 44, 115–131, doi: 10.1007/s00382-014-2354-7.

    Article  Google Scholar 

  • Puy M., J. Vialard, M. Lengaigne, et al., 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian Oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 2155–2178, doi: 10.1007/s00382-015-2695-x.

    Article  Google Scholar 

  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010GL046031.

    Article  Google Scholar 

  • Rodríguez-Fonseca B., I. Polo, J. García-Serrano, et al., 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, doi: 10.1029/2009GL040048.

    Article  Google Scholar 

  • Saravanan R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13, 2177–2194, doi: 10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2.

    Article  Google Scholar 

  • Sasaki W., T. Doi, K. J. Richards, et al., 2014: Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Climate Dyn., 43, 2539–2552, doi: 10.1007/s00382-014-2072-1.

    Article  Google Scholar 

  • Seiki A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 3325–3345, doi: 10.1175/MWR3477.1.

    Google Scholar 

  • Seiki A., Y. N. Takayabu, K. Yoneyama, et al., 2009: The oceanic response to the Madden–Julian Oscillation and ENSO. SOLA, 5, 93–96, doi: 10.2151/sola.2009-024.

    Article  Google Scholar 

  • Seo, K.-H., and Y. Xue, 2005: MJO-related oceanic Kelvin waves and the ENSO cycle: A study with the NCEP global ocean data assimilation system. Geophys. Res. Lett., 32, L07712, doi: 10.1029/2005GL022511.

    Article  Google Scholar 

  • Shinoda T., H. E. Hurlburt, and E. J. Metzger, 2011: Anomalous tropical ocean circulation associated with La Niña Modoki. J. Geophys. Res., 116, C12001, doi: 10.1029/2011JC007304.

    Article  Google Scholar 

  • Smith T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, doi: 10.1175/2007JCLI2100.1.

    Article  Google Scholar 

  • Tang Y. M., and B. Yu, 2008a: MJO and its relationship to ENSO. J. Geophys. Res., 113, D14106, doi: 10.1029/2007JD009230.

    Article  Google Scholar 

  • Tang Y. M., and B. Yu, 2008b: An analysis of nonlinear relationship between the MJO and ENSO. J. Meteor. Soc. Japan, 86, 867–881, doi: 10.2151/jmsj.86.867.

    Article  Google Scholar 

  • Timmermann A., Y. Okumura, S.-I. An, et al., 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 4899–4919, doi: 10.1175/JCLI4283.1.

    Article  Google Scholar 

  • Uvo C. B., C. A. Repelli, S. E. Zebiak, et al., 1998: The relationships between tropical Pacific and Atlantic SST and Northeast Brazil monthly precipitation. J. Climate, 11, 551–562, doi: 10.1175/15200442(1998)011<0551:TRBTPA>2.0.CO;2.

    Article  Google Scholar 

  • Wang C. Z., S.-K. Lee, and C. R. Mechoso, 2010: Interhemispheric influence of the Atlantic warm pool on the southeastern Pacific. J. Climate, 23, 404–418, doi: 10.1175/2009JCLI3127.1.

    Article  Google Scholar 

  • Wheeler M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932, doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    Article  Google Scholar 

  • Wiedermann M., A. Radebach, J. F. Donges, et al., 2016: A climate network-based index to discriminate different types of El Niño and La Niña. Geophys. Res. Lett., 43, 7176–7185, doi: 10.1002/2016GL069119.

    Article  Google Scholar 

  • Wright P. B., 1986: Precursors of the Southern Oscillation. Int. J. Climatol., 6, 17–30, doi: 10.1002/joc.3370060103.

    Article  Google Scholar 

  • Wu Z. W., J. P. Li, Z. H. Jiang, et al., 2012: Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian Summer monsoon and ENSO. Int. J. Climatol., 32, 794–800, doi: 10.1002/joc.2309.

    Article  Google Scholar 

  • Xue Y., W. Higgins, and V. Kousky, 2002: Influences of the Madden–Julian Oscillation on temperature and precipitation in North America during ENSO-neutral and weak ENSO winters. Proc. Workshop on Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal Time Scales, Mitchellville, MD, NASA Goddard Space Flight Center, 4–4.

    Google Scholar 

  • Xue Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 1601–1612, doi: 10.1175/1520-0442-16.10.1601.

    Article  Google Scholar 

  • Yan X., and J. H. Ju, 2016: Analysis of the major characteristics of persistent MJO anomalies in summer. Chinese J. Atmos. Sci., 40, 1048–1058, doi: 10.3878/j.issn.1006-9895.1601.15248. (in Chinese)

    Google Scholar 

  • Yan X., J. H. Ju, and W. W. Gan, 2016: The influence of persistent anomaly of MJO on ENSO. J. Trop. Meteor., 22, 24–36, doi: 10.16555/j.1006-8775.2016.S1.003.

    Google Scholar 

  • Yu J. H., T. Li, Z. M. Tan, et al., 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865–877, doi: 10.1007/s00382-015-2618-x.

    Article  Google Scholar 

  • Zavala-Garay J., C. Zhang, A. M. Moore, et al., 2005: The linear response of ENSO to the Madden–Julian Oscillation. J. Climate, 18, 2441–2459, doi: 10.1175/JCLI3408.1.

    Article  Google Scholar 

  • Zavala-Garay J., C. Zhang, A. M. Moore, et al., 2008: Sensitivity of hybrid ENSO models to unresolved atmospheric variability. J. Climate, 21, 3704–3721, doi: 10.1175/2007JCLI1188.1.

    Article  Google Scholar 

  • Zhang C. D., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian Oscillation in the equatorial Pacific. J. Climate, 15, 2429–2445, doi: 10.1175/1520-0442(2002)015 <2429:SAOEAT>2.0.CO;2.

    Article  Google Scholar 

  • Zuo J. Q., W. J. Li, C. H. Sun, et al., 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 1173–1186, doi: 10.1007/s00376-012-2125-5.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the constructive suggestions from the two anonymous reviewers, from Dr. Junmei Lyu of the Chinese Academy of Meteorological Sciences, and from Professor V. Krishnamurthy of the Geroge Mason University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Ju.

Additional information

Supported by the National Natural Science Foundation of China (41375059, 41690123, 41690120, 41661144019, and 41375081), China Meteorological Administration (CMA) Special Public Welfare Research Fund (GYHY201306022), State Key Laboratory for Severe Weather Special Fund (2016LASW-B01), and Research Fund of CMA Guangzhou Institute of Tropical and Marine Meteorology/ Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Ren, J., Ju, J. et al. Influence of Springtime Atlantic SST on ENSO: Role of the Madden–Julian Oscillation. J Meteorol Res 32, 380–393 (2018). https://doi.org/10.1007/s13351-018-7046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7046-5

Key words

Navigation