Skip to main content
Log in

Impact of 10–60-Day Low-Frequency Steering Flows on Straight Northward-Moving Typhoon Tracks over the Western North Pacific

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This study investigates the impact of low-frequency (intraseasonal and interannual) steering flows on straight northward-moving (defined as a meridional displacement two times greater than the zonal displacement) typhoons over the western North Pacific using observational data. The year-to-year change in the northward-moving tracks is affected by the interannual change in the location and intensity of the subtropical high. A strengthened northward steering flow east of 120°E and a weakened easterly steering flow south of the subtropical high favor more frequent straight northward tracks. Examining each of the individual northward-moving typhoons shows that they interact with three types of intraseasonal (10–60-day) background flows during their northward journey. The first type is the monsoon gyre pattern, in which the northward-moving typhoon is embedded in a closed cyclonic monsoon gyre circulation. The second type is the wave train pattern, where a cyclonic (anticyclonic) vorticity circulation is located to the west (east) of the northward-moving typhoon center. The third type is the mid-latitude trough pattern, in which the northward-moving typhoon center is located in the maximum vorticity region of the trough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes R. A., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. American Meteorological Society, Boston, 208 pp.

    Book  Google Scholar 

  • Bi M. Y., T. Li, M. Peng, et al., 2015: Interactions between typhoon Megi (2010) and a low-frequency monsoon gyre. J. Atmos. Sci., 72, 2682–2702, doi: 10.1175/JAS-D-14-0269.1.

    Article  Google Scholar 

  • Brand S., C. A. Buenafe, and H. D. Hamilton, 1981: Comparison of tropical cyclone motion and environmental steering. Mon. Wea. Rev., 109, 908–909, doi: 10.1175/1520-0493(1981)109<0908:COTCMA>2.0.CO;2.

    Article  Google Scholar 

  • Cao X., T. Li, M. Peng, et al., 2014: Effects of monsoon trough intraseasonal oscillation on tropical cyclogenesis over the western North Pacific. J. Atmos. Sci., 71, 4639–4660, doi: 10.1175/JAS-D-13-0407.1.

    Article  Google Scholar 

  • Carr L. E., and R. L. Elsberry, 1995: Monsoonal interactions leading to sudden tropical cyclone track changes. Mon. Wea. Rev., 123, 265–290, doi: 10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2.

    Article  Google Scholar 

  • Chan J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 1354–1374, doi: 10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    Article  Google Scholar 

  • Chen L. S., and Z. Y. Meng, 2001: An overview on tropical cyclone research progress in China during the past 10 years. Chinese J. Atmos. Sci., 25, 420–432, doi: 10.3878/j.issn.1006-9895.2001.03.11. (in Chinese)

    Google Scholar 

  • Duchon C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022, doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    Article  Google Scholar 

  • Fiorino M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975–990, doi: 10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    Article  Google Scholar 

  • Fovell R. G., Y. P. Bu, K. L. Corbosiero, et al, 2016: Influence of cloud microphysics and radiation on tropical cyclone structure and motion. Meteor. Monogr., 56, 11.1–11.27, doi: 10.1175/AMSMONOGRAPHS-D-15-0006.1.

    Article  Google Scholar 

  • Fu B., T. Li, M. S. Peng, et al, 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763–780, doi: 10.1175/WAF1013.1.

    Article  Google Scholar 

  • Gao S. Y., T. T. Zhao, L. L. Song, et al., 2017: Study of northward moving tropical cyclones in 1949–2015. Meteor. Sci. Technol., 45, 313–323, doi: 10.19517/j.1671-6345.20160229. (in Chinese)

    Google Scholar 

  • Holland G. J., 1984: Tropical cyclone motion: A comparison of theory and observation. J. Atmos. Sci., 41, 68–75, doi: 10.1175/1520-0469(1984)041<0068:TCMACO>2.0.CO;2.

    Article  Google Scholar 

  • Hsu P. C., T. Li, and C. H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927–941, doi: 10.1175/2010JCLI3833.1.

    Google Scholar 

  • Jiang X. A., D. E. Waliser, P. K. Xavier, et al., 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res., 120, 4718–4748, doi: 10.1002/2014JD022375.

    Google Scholar 

  • Kasahara A., 1957: The numerical prediction of hurricane movement with the barotropic model. J. Atmos. Sci., 14, 386–402, doi:1 0.1175/15200469(1957)014<0386:TNPOHM>2.0.CO;2.

    Google Scholar 

  • Kasahara A., 1960: The numerical prediction of hurricane movement with a two-level baroclinic model. J. Atmos. Sci., 17, 357–370, doi: 10.1175/1520-0469(1960)017<0357:TNPOHM>2.0.CO;2.

    Google Scholar 

  • Kurihara Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045, doi: 10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    Article  Google Scholar 

  • Lander M. A., 1994: Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640–654, doi: 10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2.

    Article  Google Scholar 

  • Li C. Y., J. Pan, H. Tian, et al., 2012: Typhoon activities over the western north Pacific and atmospheric intraseasonal oscillation. Meteor. Mon., 38, 1–16, doi: 10.7519/j.issn.1000-0526.2012.1.001. (in Chinese)

    Google Scholar 

  • Li R. C. Y., and W. Zhou, 2013a: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 2904–2918, doi: 10.1175/JCLID-12-00210.1.

    Article  Google Scholar 

  • Li R. C. Y., and W. Zhou, 2013b: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 2919–2930, doi: 10.1175/JCLID-12-00211.1.

    Article  Google Scholar 

  • Li T., 2010: Monsoon climate variabilities. Climate Dynamics: Why Does Climate Vary? D. Z. Sun, and F. Bryan, Eds., American Geophysical Union, Washington DC, doi: 10.1029/2008GM000782.

  • Li T., 2012: Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclones: Formation, Triggers and Control. K. Oouchi, and H. Fudeyasu, Eds., Nova Science Publishers Inc., New York, NY, USA, 276 pp.

    Google Scholar 

  • Li T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28, 1–33, doi: 10.1007/s13351-014-3087-6.

    Google Scholar 

  • Li T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Ocean. Sci., 16, 285–314, doi: 10.3319/TAO.2005.16.2.285(A).

    Article  Google Scholar 

  • Li T. M., and Y. Zhu, 1991: Analysis and modelling of tropical cyclone motion (I)—The axiasymmetric structure and the sudden change of tracks. Sci. China (Ser. B), 34, 222–233, doi: 10.1360/yb1991-34-2-222.

    Google Scholar 

  • Liebmann B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401–412, doi: 10.2151/jmsj1965.72.3_401.

    Article  Google Scholar 

  • Maloney E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 2387–2403, doi: 10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    Article  Google Scholar 

  • Ren S. L., Y. M. Liu, and G. X. Wu, 2007: Interactions between typhoon and subtropical anticyclone over western Pacific revealed by numerical experiments. Acta Meteor. Sinica, 65, 329–340, doi: 10.11676/qxxb2007.032. (in Chinese)

    Google Scholar 

  • Tao L., S. J. Li, Y. Han, et al., 2012: Impact of intraseasonal oscillations of tropical atmosphere on TC track change over the western North Pacific. J. Trop. Meteor., 28, 698–706, doi: 10.3969/j.issn.1004-4965.2012.05.009. (in Chinese)

    Google Scholar 

  • Tian H., C. Y. Li, and H. Yang, 2010: Modulation of typhoon tracks over the western North Pacific by the intraseasonal oscillation. Chinese J. Atmos. Sci., 34, 559–579, doi: 10.3878/j.issn.1006-9895.2010.03.09. (in Chinese)

    Google Scholar 

  • Wang B., R. L. Elsberry, Y. Q. Wang, et al., 1998: Dynamics in tropical cyclone motion: A review. Chinese J. Atmos. Sci., 22, 535–547, doi: 10.3878/j.issn.1006-9895.1998.04.15. (in Chinese)

    Google Scholar 

  • Xu X. D., L. Xie, X. J. Zhang, et al., 2006: A mathematical model for forecasting tropical cyclone tracks. Nonlinear Anal. Real World Appl., 7, 211–224, doi: 10.1016/j.nonrwa.2004.04.004.

    Article  Google Scholar 

  • Xu Y. M., T. Li, and M. Peng, 2013: Tropical cyclogenesis in the western North Pacific as revealed by the 2008–09 YOTC data. Wea. Forecasting, 28, 1038–1056, doi: 10.1175/WAFD-12-00104.1.

    Article  Google Scholar 

  • Xu Y. M., T. Li, and M. Peng, 2014: Roles of the synoptic-scale wave train, the intraseasonal oscillation, and high-frequency eddies in the genesis of Typhoon Manyi (2001). J. Atmos. Sci., 71, 3706–3722, doi: 10.1175/JAS-D-13-0406.1.

    Article  Google Scholar 

  • Yamada H., T. Nasuno, W. Yanase, et al., 2016: Role of the vertical structure of a simulated tropical cyclone in its motion: A case study of Typhoon Fengshen (2008). SOLA, 12, 203–208, doi: 10.2151/sola.2016-041.

    Article  Google Scholar 

  • Yang L., Y. Du, D. X. Wang, et al., 2015: Impact of intraseasonal oscillation on the tropical cyclone track in the South China Sea. Climate Dyn., 44, 1505–1519, doi: 10.1007/s00382-014-2180-y.

    Article  Google Scholar 

  • Yoshida R., Y. Kajikawa, and H. Ishikawa, 2014: Impact of boreal summer intraseasonal oscillation on environment of tropical cyclone genesis over the western North Pacific. SOLA, 10, 15–18, doi: 10.2151/sola.2014-004.

    Article  Google Scholar 

  • Zhu Z. W., T. Li, P. C. Hsu, et al., 2015: A spatial-temporal projection model for extended-range forecast in the tropics. Climate Dyn., 45, 1085–1098, doi: 10.1007/s00382-014-2353-8.

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the constructive comments from the anonymous reviewers and Dr. Mingyu Bi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Li.

Additional information

Supported by the National (Key) Basic Research and Development (973) Program of China (2017YFA0603802 and 2015CB453200), National Natural Science Foundation of China (41630423, 41475084, 41575043, and 41375095), US National Science Foundation (AGS-1643297), NRL grant (N00173-16-1-G906), Jiangsu Projects (BK20150062 and R2014SCT001), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). This is SOEST contribution number 10297, IPRC contribution number 1305, and ESMC contribution 203.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, T. & Zhou, W. Impact of 10–60-Day Low-Frequency Steering Flows on Straight Northward-Moving Typhoon Tracks over the Western North Pacific. J Meteorol Res 32, 394–409 (2018). https://doi.org/10.1007/s13351-018-7035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7035-8

Key words

Navigation