Skip to main content

Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review

Abstract

The western North Pacific anomalous anticyclone (WNPAC) is an important atmospheric circulation system that conveys El Niño impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere–ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere–ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Niño mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Niño decaying summer. The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere–ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Niño decaying/La Niña developing or La Niña persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.

This is a preview of subscription content, access via your institution.

References

  1. Alexander, M. A., I. Blade, M. Newman, et al., 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    Article  Google Scholar 

  2. Chang, C.-P., and T. Li, 2000: A theory for the tropical tropospheric biennial oscillation. J. Atmos. Sci., 57, 2209–2224, doi: 10.1175/1520-0469(2000)057<2209:ATFTTT>2.0.CO;2.

    Article  Google Scholar 

  3. Chang, C.-P., Y. S. Zhang, and T. Li, 2000a: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 4310–4325, doi: 10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    Google Scholar 

  4. Chang, C.-P., Y. S. Zhang, and T. Li, 2000b: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon. J. Climate, 13, 4326–4340, doi: 10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2.

    Google Scholar 

  5. Chen, J.-M., T. Li, and C.-F. Shih, 2007: Fall persistence barrier of sea surface temperature in the South China Sea associated with ENSO. J. Climate, 20, 158–172, doi: 10.1175/JCLI4000.1.

    Article  Google Scholar 

  6. Chen, M.-C., T. Li, X.-Y. Shen, et al., 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J. Climate, 29, 2201–2220, doi: 10.1175/JCLI-D-15-0547.1.

    Article  Google Scholar 

  7. Chen, Z.-S., Z.-P. Wen, R. G. Wu, et al., 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 1027–1041, doi: 10.1007/s00382-015-2630-1.

    Article  Google Scholar 

  8. Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 4143–4158, doi: 10.1175/JCLI4953.1.

    Article  Google Scholar 

  9. Chou, C., 2004: Establishment of the low-level wind anomalies over the western North Pacific during ENSO development. J. Climate, 17, 2195–2212, doi: 10.1175/1520-0442(2004)017<2195:EOTLWA>2.0.CO;2.

    Article  Google Scholar 

  10. Chung, P. H., C. H. Sui, and T. Li, 2011: Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res., 16, D13111, doi: 10.1029/2010JD015554.

    Article  Google Scholar 

  11. Fu, C. B., and X. L. Teng, 1988: Climate anomalies in China associated with E1 Niño/Southern Oscillation. Chinese J. Atmos. Sci., 12, 133–141, doi: 10.3878/j.issn.1006-9895.1988.t1.11. (in Chinese)

    Google Scholar 

  12. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi: 10.1002/qj.49710644905.

    Article  Google Scholar 

  13. Gong, D. Y., and C. H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 1436, doi: 10.1029/2001GL014523.

    Article  Google Scholar 

  14. Gu, D. J., T. Li, Z. P. Ji, et al., 2010: On the phase relations between the western North pacific, Indian, and Australian monsoons. J. Climate, 23, 5572–5589, doi: 10.1175/2010JCLI2761.1.

    Article  Google Scholar 

  15. Ham, Y.-G., J.-S. Kug, J.-Y. Park, et al., 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geoscience, 6, 112–116, doi: 10.1038/ngeo1686.

    Article  Google Scholar 

  16. Hong, C.-C., T. Li, H. Lin, et al., 2010: Asymmetry of the Indian Ocean basinwide SST anomalies: Roles of ENSO and IOD. J. Climate, 23, 3563–3576, doi: 10.1175/2010JCLI3320.1.

    Article  Google Scholar 

  17. Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    Article  Google Scholar 

  18. Hu, Z. Z., 1997: Interdecadal variability of summer climate over East Asia and its association with 500-hPa height and global sea surface temperature. J. Geophys. Res., 102, 19403–19412, doi: 10.1029/97JD01052.

    Article  Google Scholar 

  19. Huang, R. H., and Y. F. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 21–32, doi: 10.1007/BF02656915.

    Article  Google Scholar 

  20. Jiang, X. A., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 3777–3795, doi: 10.1175/JCLI3516.1.

    Article  Google Scholar 

  21. Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    Article  Google Scholar 

  22. Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 3–20, doi: 10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    Article  Google Scholar 

  23. Lau, N.-C., and B. Wang, 2006: Interactions between the Asian monsoon and the El Niño/Southern Oscillation. The Asian Monsoon, Wang, B. Ed., Springer/Praxis Publishing, New York, 478–512.

  24. Lau, N. C., A. Leetmaa, and M. J. Nath, 2006: Attribution of atmospheric variations in the 1997–2003 period to SST anomalies in the Pacific and Indian Ocean basins. J. Climate, 19, 3607–3628, doi: 10.1175/JCLI3813.1.

    Article  Google Scholar 

  25. Li, S. L., J. Lu, G. Huang, et al., 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 6080–6088, doi: 10.1175/2008JCLI2433.1.

    Article  Google Scholar 

  26. Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 1093–1102, doi: 10.1175/JAS3676.1.

    Article  Google Scholar 

  27. Li, T., 2010: Monsoon climate variabilities. Climate Dynamics: Why Does Climate Vary? Sun, D. Z., and F. Bryan, Eds., American Geophysical Union, Washington DC, doi: 10.1029/2008GM000782.

  28. Li, T. 2012: Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclones: Formation, Triggers and Control, Oouchi, K., and H. Fudeyasu, Eds., Nova Science Publishers, Inc., Hauppauge, NY, 61–94.

  29. Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci., 16, 285–314.

    Article  Google Scholar 

  30. Li, T., and P.-C. Hsu, 2017: Monsoon dynamics and its interactions with ocean. Fundamentals of Tropical Climate Dynamics, Springer International Publishing, Cham, 236 pp, doi: 10.1007/978-3-319-59597-9.

    Google Scholar 

  31. Li, T., B. Wang, C.-P. Chang, et al., 2003: A theory for the Indian Ocean dipole-zonal mode. J. Atmos. Sci., 60, 2119–2135, doi: 10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    Article  Google Scholar 

  32. Li, T., P. Liu, X. Fu, et al., 2006: Spatiotemporal structures and mechanisms of the tropospheric biennial oscillation in the Indo-Pacific warm ocean regions. J. Climate, 19, 3070–3087, doi: 10.1175/JCLI3736.1.

    Article  Google Scholar 

  33. Li, T., B. Wang, and L. Wang, 2016: Comments on “Combination mode dynamics of the anomalous Northwest Pacific anticyclone”. J. Climate, 29, 4685–4693, doi: 10.1175/JCLI-D-15-0385.1.

    Article  Google Scholar 

  34. Liu, J., B. Wang, and J. Yang, 2008: Forced and internal modes of variability of the East Asian summer monsoon. Climate of the Past, 4, 225–233, doi: 10.5194/cp-4-225-2008.

    Article  Google Scholar 

  35. Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115, 27–50, doi: 10.1175/1520-0493(1987)115<0027:TACAIV>2.0.CO;2.

    Article  Google Scholar 

  36. Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3–12, doi: 10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    Article  Google Scholar 

  37. Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, London, 289 pp.

    Google Scholar 

  38. Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384, doi: 10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    Article  Google Scholar 

  39. Roeckner, E., K. Arpe, L. Bengtsson, et al., 1996: The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate. Max-Planck-Institute for Meteorology Rep. 218, Max-Planck-Institut für Meteorologie, 90 pp. [Available online at http://www.mpimet. mpg.de/fileadmin/publikationen/Reports/]

    Google Scholar 

  40. Rong, X. Y., R. H. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chinese Sci. Bull., 55, 2458–2468, doi: 10.1007/s11434-010-3098-3.

    Article  Google Scholar 

  41. Saravanan, R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13, 2177–2194, doi: 10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2.

    Article  Google Scholar 

  42. Shen, S., and K.-M. Lau, 1995: Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperatures. J. Meteor. Soc. Japan, 73, 105–124, doi: 10.2151/jmsj1965.73.1_105.

    Article  Google Scholar 

  43. Stuecker, M. F., F.-F. Jin, A. Timmermann, et al., 2015: Combination mode dynamics of the anomalous Northwest Pacific anticyclone. J. Climate, 28, 1093–1111, doi: 10.1175/JCLI-D-14-00225.1.

    Article  Google Scholar 

  44. Sui, C.-H., P. H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34, L11701, doi: 10.1029/2006GL029204.

    Article  Google Scholar 

  45. Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, Chang, C.-P., and T. N. Krishramuti, Eds., Oxford University Press, Oxford, 60–92.

  46. Tao, S. Y., and Q. Y. Zhang, 1998: Response of the Asian winter and summer monsoon to ENSO events. Sci. Atmos. Sinica, 22, 399–407, doi: 10.3878/j.issn.1006-9895.1998.04.02. (in Chinese)

    Google Scholar 

  47. Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812, doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    Article  Google Scholar 

  48. Wang, B., and X. S. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining Madden–Julian Oscillation. J. Climate, 11, 2116–2135, doi: 10.1175/1520-0442-11.8.2116.

    Article  Google Scholar 

  49. Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658, doi: 10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    Article  Google Scholar 

  50. Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 3252–3265, doi: 10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.

    Article  Google Scholar 

  51. Wang, B., and T. Li, 2004: East Asian monsoon and ENSO interaction. East Asian Monsoon, C.-P. Chang, Ed., World Scientific Publishing, Singapore, 172-212.

  52. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    Article  Google Scholar 

  53. Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 1195–1211, doi: 10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    Article  Google Scholar 

  54. Wang, B., Q. H. Ding, X. H. Fu, et al., 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi: 10.1029/2005GL02273412.

    Article  Google Scholar 

  55. Wang, B., B. Q. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 2718–2722, doi: 10.1073/pnas.1214626110.

    Article  Google Scholar 

  56. Wang, B., J. Li, and Q. He, 2017: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34, 1235–1248, doi: 10.1007/s00376-017-7016-3.

    Article  Google Scholar 

  57. Watanabe, M., and F.-F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, 1478, doi: 10.1029/2001GL014318.

    Google Scholar 

  58. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926, doi: 10.1002/qj.49711850705.

    Article  Google Scholar 

  59. Webster, P. J., V. O. Magaña, T. N. Palmer, et al., 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14451–14510, doi: 10.1029/97JC02719.

    Article  Google Scholar 

  60. Wu, R. G., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 3742–3758, doi: 10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    Article  Google Scholar 

  61. Wu, R. G., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, doi: 10.1029/2007JD009316.

    Google Scholar 

  62. Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 2992–3005, doi: 10.1175/2008JCLI2710.1.

    Article  Google Scholar 

  63. Wu, B., T. Li, and T. Zhou, 2010a: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 2974–2986, doi: 10.1175/2010JCLI3300.1.

    Article  Google Scholar 

  64. Wu, B., T. Li, and T. Zhou, 2010b: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 4807–4822, doi: 10.1175/2010JCLI3222.1.

    Article  Google Scholar 

  65. Wu, B., T. J. Zhou, and T. Li, 2017a: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 9621–9635, doi: 10.1175/JCLID-16-0489.1.

    Article  Google Scholar 

  66. Wu, B., T. J. Zhou, and T. Li, 2017b: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes. J. Climate, 30, 9637–9650, doi: 10.1175/JCLI-D-16-0495.1.

    Google Scholar 

  67. Wu, P., Y. H. Ding, and Y. J. Liu, 2017: A new study of El Niño impacts on summertime water vapor transport and rainfall in China. Acta Meteor. Sinica, 75, 371–383, doi: 10.11676/qxxb2017.033. (in Chinese)

    Google Scholar 

  68. Xiang, B. Q., B. Wang, W. D. Yu, et al., 2013: How can anomalous western North Pacific subtropical high intensify in late summer? Geophys. Res. Lett., 40, 2349–2354, doi: 10.1002/grl.50431.

    Article  Google Scholar 

  69. Xie, S.-P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, doi: 10.1175/2008JCLI2544.1.

    Article  Google Scholar 

  70. Yang, J. L., Q. Y. Liu, S.-P. Xie, et al., 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi: 10.1029/2006GL028571.

    Google Scholar 

  71. Yu, J. H., T. Li, Z. M. Tan, et al., 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865–877, doi: 10.1007/s00382-015-2618-x.

    Article  Google Scholar 

  72. Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the’ 86/87 and’ 91/92 events. J. Meteor. Soc. Japan, 74, 49–62, doi: 10.2151/jmsj1965.74.1_49.

    Article  Google Scholar 

  73. Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229–241, doi: 10.1007/BF02973084.

    Article  Google Scholar 

  74. Zhang, R. H., Q. Min, and J. Z. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 1124–1132, doi: 10.1007/s11430-016-9026-x.

    Article  Google Scholar 

  75. Zhou, T. J., D. Y. Gong, J. Li, et al., 2009a: Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon—Recent progress and state of affairs. Meteor. Z., 18, 455–467, doi: 10.1127/0941-2948/2009/0396.

    Article  Google Scholar 

  76. Zhou, T. J., R. C. Yu, J. Zhang, et al., 2009b: Why the western Pacific subtropical high has extended westward since the late 1970s? J. Climate, 22, 2199–2215, doi: 10.1175/2008JCLI2527.1.

    Article  Google Scholar 

  77. Zhu, Z. W., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia–North America teleconnection. J. Climate, 29, 7313–7327, doi: 10.1175/JCLI-D-16-0137.1.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tim Li.

Additional information

Supported by the National Key Research and Development Program (2017YFA0603802 and 2015CB453200), National Natural Science Foundation of China (41630423, 41475084, 41575043, and 41375095), United States National Science Foundation (AGS-1565653), Jiangsu Province Natural Science Foundation Key Project (BK20150062), Jiangsu Shuang-Chuang Team Fund (R2014SCT001), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). This is SOEST contribution number 10280, IPRC contribution number 1297, and ESMC contribution 196.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, T., Wang, B., Wu, B. et al. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J Meteorol Res 31, 987–1006 (2017). https://doi.org/10.1007/s13351-017-7147-6

Download citation

Keywords

  • western North Pacific
  • anomalous anticyclone
  • El Niño
  • atmosphere–ocean interaction
  • ENSO
  • sea surface temperature
  • Indian Ocean capacitor