Skip to main content
Log in

Structural characteristics of atmospheric temperature and humidity inside clouds of convective and stratiform precipitation in the rainy season over East Asia

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

In this study, a merged dataset constructed from Tropical Rainfall Measuring Mission precipitation radar rain products and Integrated Global Radiosonde Archive data is used to investigate the thermal structural characteristics of convective and stratiform precipitation in the rainy season (May–August) of 1998–2012 over East Asia. The results show that the storm tops for convective precipitation are higher than those for stratiform precipitation, because of the more unstable atmospheric motions for convective precipitation. Moreover, the storm tops are higher at 1200 UTC than at 0000 UTC over land regions for both convective and stratiform precipitation, and vice versa for ocean region. Additionally, temperature anomaly patterns inside convective and stratiform precipitating clouds show a negative anomaly of about 0–2 K, which results in cooling effects in the lower troposphere. This cooling is more obvious at 1200 UTC for stratiform precipitation. The positive anomaly that appears in the middle troposphere is more than 2 K, with the strongest warming at 300 hPa. Relative humidity anomaly patterns show a positive anomaly in the middle troposphere (700–500 hPa) prior to the occurrence of the two types of precipitation, and the increase in moisture is evident for stratiform precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D. K., and E. P. Souza, 2009: CAPE and convective events in the southwest during the North American monsoon. Mon. Wea. Rev., 137, 83–98, doi: 10.1175/2008MWR2502.1.

    Article  Google Scholar 

  • Alexeev, V. A., I. Esau, I. V. Polyakov, et al., 2012: Vertical structure of recent Arctic warming from observed data and reanalysis products. Climatic Change, 111, 215–239, doi: 10.1007/s10584-011-0192-8.

    Article  Google Scholar 

  • Bao, X. H., F. Q. Zhang, and J. H. Sun, 2011: Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 2790–2810, doi: 10.1175/MWRD-11-00006.1.

    Article  Google Scholar 

  • Chen, F. J., Y. F. Fu, P. Liu, et al., 2016: Seasonal variability of storm top altitudes in the tropics and subtropics observed by TRMM PR. Atmos. Res., 169, 113–126, doi: 10.1016/j.atmosres.2015.09.017.

    Article  Google Scholar 

  • Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidence. Int. J. Climatol., 28, 1139–1161, doi: 10.1002/joc.1615.

    Article  Google Scholar 

  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 53–68, doi: 10.1175/JCLI3594.1.

    Article  Google Scholar 

  • Feng, S., Y. F. Fu, and Q. N. Xiao, 2012: Trends in the global tropopause thickness revealed by radiosondes. Geophys. Res. Lett., 39, L20706, doi: 10.1029/2012GL053460.

    Article  Google Scholar 

  • Folkins, I., 2013: The melting level stability anomaly in the tropics. Atmos. Chem. Phys., 13, 1167–1176, doi: 10.5194/acp-13-1167-2013.

    Article  Google Scholar 

  • Folkins, I., S. Fueglistaler, G. Lesins, et al., 2008: A low-level circulation in the tropics. J. Atmos. Sci., 65, 1019–1034, doi: 10.1175/2007JAS2463.1.

    Article  Google Scholar 

  • Fu, Y. F., and G. S. Liu, 2003: Precipitation characteristics in midlatitude East Asia as observed by TRMM PR and TMI. J. Meteor. Soc. Japan Ser. II, 81, 1353–1369, doi: 10.2151/jmsj.81.1353.

    Article  Google Scholar 

  • Fu, Y. F., R. C. Yu, Y. P. Xu, et al., 2003: Analysis on precipitation structures of two heavy rain cases by using TRMM PR and IMI. Acta Meteor. Sinica, 61, 421–431, doi: 10.3321/j.issn:0577-6619.2003.04.004. (in Chinese)

    Google Scholar 

  • Fu, Y. F., J. Y. Feng, H. F. Zhu, et al., 2005: Structures of a thermal convective precipitation system in controlling of the western subtropical Pacific high. Acta Meteor. Sinica, 63, 750–761, doi: 10.3321/j.issn:0577-6619.2005.05.019. (in Chinese)

    Google Scholar 

  • Fu, Y. F., R. C. Yu, C. G. Cui, et al., 2007: The structure characteristics of precipitating clouds over East Asia Based on TRMM measurements. Torrent. Rain Disast., 26, 9–20. (in Chinese)

    Google Scholar 

  • Fu, Y. F., A. M. Zhang, Y. Liu, et al., 2008: Characteristics of seasonal scale convective and stratiform precipitation in Asia based on measurements by TRMM precipitation radar. Acta Meteor. Sinica, 66, 730–746. (in Chinese)

    Google Scholar 

  • Fu, Y. F., A. Q. Cao, T. Y. Li, et al., 2012: Climatic characteristics of the storm top altitude for the convective and stratiform precipitation in summer Asia based on measurements of the TRMM precipitation radar. Acta Meteor. Sinica, 70, 436–451, doi: 10.11676/qxxb2012.037. (in Chinese)

    Google Scholar 

  • Fu, Y. F., Q. Liu, Y. Gao, et al., 2013: A feasible method for merging the TRMM microwave imager and precipitation radar data. J. Quant. Spectr. Radiat. Transf., 122, 155–169, doi: 10.1016/j.jqsrt.2012.08.028.

    Article  Google Scholar 

  • Fu, Y. F., X. Pan, Y. J. Yang, et al., 2017: Climatological characteristics of summer precipitation over East Asia measured by TRMM PR: A review. J. Meteor. Res., 31, 142–159, doi: 10.1007/s13351-017-6156-9.

    Article  Google Scholar 

  • Guo, Y. J., and Y. H. Ding, 2009: Long-term free-atmosphere temperature trends in China derived from homogenized in situ radiosonde temperature series. J. Climate, 22, 1037–1051, doi: 10.1175/2008JCLI2480.1.

    Article  Google Scholar 

  • Houze, Jr. R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox. Bull. Amer. Meteor. Soc., 78, 2179–2196, doi: 10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    Article  Google Scholar 

  • Houze, Jr. R. A., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar. Quart. J. Roy. Meteor. Soc., 133, 1389–1411, doi: 10.1002/qj.106.

    Google Scholar 

  • Iturrioz, I., E. Hernández, P. Ribera, et al., 2007: Instability and its relation to precipitation over the eastern Iberian Peninsula. Adv. Geosci., 10, 45–50, doi: 10.5194/adgeo-10-45-2007.

    Article  Google Scholar 

  • Juneng, L., and F. T. Tangang, 2005: Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-Pacific sector. Climate Dyn., 25, 337–350, doi: 10.1007/s00382-005-0031-6.

    Article  Google Scholar 

  • Kummerow, C., W. Barnes, T. Kozu, et al., 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817, doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    Article  Google Scholar 

  • Lang, S., W. K. Tao, J. Simpson, et al., 2003: Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42, 505–527, doi: 10.1175/1520-0450(2003)042<0505:MOCSPP>2.0.CO;2.

    Article  Google Scholar 

  • Li, R., Q. L. Min, X. Q. Wu, et al, 2013: Retrieving latent heating vertical structure from cloud and precipitation profiles—Part II: Deep convective and stratiform rain processes. J. Quant. Spectr. Radiat. Transf., 122, 47–63, doi: 10.1016/j.jqsrt.2012.11.029.

    Article  Google Scholar 

  • Li, W. B., Z. J. Liu, and C. Luo, 2012: Characteristics of the synoptic time scale variability over the South China Sea based on Tropical Rainfall Measuring Mission. Meteor. Atmos. Phys., 115, 163–171, doi: 10.1007/s00703-011-0174-4.

    Article  Google Scholar 

  • Liu, G. S., and Y. F. Fu, 2001: The characteristics of tropical precipitation profiles as inferred from satellite radar measurements. J. Meteor. Soc. Japan, 79, 131–143, doi: 10.2151/jmsj.79.131.

    Article  Google Scholar 

  • Liu, P., and Y. F. Fu, 2010: Climatic characteristics of summer convective and stratiform precipitation in southern China based on measurements by TRMM precipitation radar. Chinese J. Atmos. Sci., 34, 802–814. (in Chinese)

    Google Scholar 

  • Liu, P., C. Y. Li, Y. Wang, et al., 2013: Climatic characteristics of convective and stratiform precipitation over the tropical and subtropical areas as derived from TRMM PR. Sci. China Earth Sci., 56, 375–385, doi: 10.1007/s11430-012-4474-4.

    Article  Google Scholar 

  • Liu, Y. J., Y. H. Ding, and Y. L. Song, 2005: The moisture transport and moisture budget over the South China Sea before and after the summer monsoon onset in 1998. J. Trop. Meteor., 21, 55–62. (in Chinese)

    Google Scholar 

  • Lu, D. R., Y. J. Yang, and Y. F. Fu, 2016: Interannual variability of summer monsoon convective and stratiform precipitations in East Asia during 1998–2013. Int. J. Climatol., 36, 3507–3520, doi: 10.1002/joc.4572.

    Article  Google Scholar 

  • Masunaga, H., 2012: A satellite study of the atmospheric forcing and response to moist convection over tropical and subtropical oceans. J. Atmos. Sci., 69, 150–167, doi: 10.1175/JAS-D-11-016.1.

    Article  Google Scholar 

  • Mitovski, T., I. Folkins, K. Von Salzen, et al., 2010: Temperature, relative humidity, and divergence response to high rainfall events in the tropics: Observations and models. J. Climate, 23, 3613–3625, doi: 10.1175/2010JCLI3436.1.

    Article  Google Scholar 

  • Mitovski, T., and I. Folkins, 2014: Anomaly patterns about strong convective events in the tropics and midlatitudes: Observations from radiosondes and surface weather stations. J. Geophys. Res., 119, 385–406, doi: 10.1002/2013JD020447.

    Article  Google Scholar 

  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 1456–1475, doi: 10.1175/1520-0442-16.10.1456.

    Article  Google Scholar 

  • Qin, F., and Y. F. Fu, 2016: TRMM-observed summer warm rain over the tropical and subtropical Pacific Ocean: Characteristics and regional differences. J. Meteor. Res, 30, 371–385, doi: 10.1007/s13351-016-5151-x.

    Article  Google Scholar 

  • Rapp, A. D., C. D. Kummerow, and L. Fowler, 2011: Interactions between warm rain clouds and atmospheric preconditioning for deep convection in the tropics. J. Geophys. Res., 116, D23210, doi: 10.1029/2011JD016143.

    Google Scholar 

  • Ratnam, M. V., Y. D. Santhi, M. Rajeevan, et al., 2013: Diurnal variability of stability indices observed using radiosonde observations over a tropical station: Comparison with microwave radiometer measurements. Atmos. Res., 124, 21–33, doi: 10.1016/j.atmosres.2012.12.007.

    Article  Google Scholar 

  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 2457–2476, doi: 10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    Article  Google Scholar 

  • Schumacher, C., and Jr. R. A. Houze, 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 1739–1756, doi: 10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    Article  Google Scholar 

  • Sheng, P. X., J. T. Mao, J. G. Li, et al., 2003: Atmospheric Physics. Peking University Press, Beijing, 522 pp. (in Chinese)

    Google Scholar 

  • Tao, W. K., S. Lang, X. P. Zeng, et al., 2010: Relating convective and stratiform rain to latent heating. J. Climate, 23, 1874–1893, doi: 10.1175/2009JCLI3278.1.

    Article  Google Scholar 

  • Wu, X. K., X. S. Qie, and T. Yuan, 2013: Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Sci. China Earth Sci., 56, 843–854, doi: 10.1007/s11430-012-4551-8.

    Article  Google Scholar 

  • Xia, J. W., and Y. F. Fu, 2016: The Vertical characteristics of temperature and humidity inside convective and stratiform precipitating clouds in the East Asian summer monsoon region and Indian summer monsoon region. Chinese J. Atmos. Sci., 40, 563–580, doi: 10.3878/j.issn.1006-9895.1507.15123. (in Chinese)

    Google Scholar 

  • Xian, T., and Y. F. Fu, 2015: Characteristics of tropopause-penetrating convection determined by TRMM and COSMIC GPS radio occultation measurements. J. Geophys. Res., 120, 7006–7024, doi: 10.1002/2014JD022633.

    Article  Google Scholar 

  • Xu, W. X., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 1577–1592, doi: 10.1175/MWR-D-12-00177.1.

    Article  Google Scholar 

  • Yang, S., and E. A. Smith, 2000: Vertical structure and transient behavior of convective-stratiform heating in TOGA COARE from combined satellite-sounding analysis. J. Appl. Meteor., 39, 1491–1513, doi: 10.1175/1520-0450(2000)039<1491:VSATBO>2.0.CO;2.

    Article  Google Scholar 

  • Yu, R. C., T. J. Zhou, A. Y. Xiong, et al., 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi: 10.1029/2006GL028129.

    Google Scholar 

  • Yu, R. C., J. Li, H. M. Chen, et al., 2014: Progress in studies of the precipitation diurnal variation over contiguous China. J. Meteor. Res., 28, 877–902, doi: 10.1007/s13351-014-3272-7.

    Article  Google Scholar 

  • Yuter, S. E., and Jr. R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123, 1921–1940, doi: 10.1175/1520-0493(1995)123<1921:TDKAME>2.0.CO;2.

    Article  Google Scholar 

  • Zheng, D., Y. J. Zhang, W. T. Lu, et al., 2008: Simulation study about the influence of atmospheric stratification on lightning activities. Acta Meteor. Sinica, 22, 78–90.

    Google Scholar 

  • Zhou, L., and Y. Q. Wang, 2006: Tropical Rainfall Measuring Mission observation and regional model study of precipitation diurnal cycle in the New Guinean region. J. Geophys. Res., 111, D17104, doi: 10.1029/2006JD007243.

    Article  Google Scholar 

  • Zhou, T. J., and Yu, R. C., 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi: 10.1029/2004JD005413.

    Google Scholar 

  • Zhou, T. J., R. C. Yu, H. M. Chen, et al., 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 3997–4010, doi: 10.1175/2008JCLI2028.1.

    Article  Google Scholar 

  • Zhu, Y. L., H. J. Wang, W. Zhou, et al., 2011: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn., 36, 1463–1473, doi: 10.1007/s00382-010-0852-9.

    Article  Google Scholar 

Download references

Acknowledgements

We thanks the GSFC for providing the TRMM PR 2A25 data, the NCDC for providing the IGRA data, and the NOAA-CIRES Climate Diagnosis Center for providing the NCEP data. Additionally, we appreciate the constructive suggestions of the two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Fu.

Additional information

Supported by the National Natural Science Foundation of China (91337213, 41230419, and 41505033) and China Meteorological Administration Special Public Welfare Research Fund (GYHY201406001 and GYHY201306077).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Fu, Y. Structural characteristics of atmospheric temperature and humidity inside clouds of convective and stratiform precipitation in the rainy season over East Asia. J Meteorol Res 31, 890–905 (2017). https://doi.org/10.1007/s13351-017-7038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-7038-x

Key words

Navigation