Skip to main content
Log in

Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bang, C. H., J. W. Lee, and S. Y. Hong, 2009: Predictability experiments of fog and visibility in local airports over Korea using the WRF model. J. Korean Soc. Atmos. Environ., 24, 92–101.

    Google Scholar 

  • Bari, D., T. Bergot, and M. El Khlifi, 2015: Numerical study of a coastal fog event over Casablanca, Morocco. Quart. J. Roy. Meteor. Soc., 141, 1894–1905, doi: 10.1002/qj.2494.

    Article  Google Scholar 

  • Bergot, T., and D. Guedalia, 1994: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon. Wea. Rev., 122, 1218–1230, doi: 10.1175/1520-0493(1994)122<1218:NFORFP>2.0.CO;2.

    Article  Google Scholar 

  • Bergot, T., E. Terradellas, J. Cuxart, et al., 2007: Intercomparison of single-column numerical models for the prediction of radiation fog. J. Appl. Meteor. Climatol., 46, 504–521, doi: 10.1175/JAM2475.1.

    Article  Google Scholar 

  • Bieringer, P. E., M. Donovan, F. Robasky, et al., 2006: A characterization of NWP ceiling and visibility forecasts for the terminal airspace. Preprints, 12th Conference on Aviation Range and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., 3 pp. [Accessed 10 July 2017 at http://ams.confex.com/ams/Annual2006/techprogram/paper_103720.htm].

    Google Scholar 

  • Bott, A., and T. Trautmann, 2002: PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos. Res., 64, 191–203, doi: 10.1016/S0169-8095(02)00091-1.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    Article  Google Scholar 

  • Clark, P. A., and W. P. Hopwood, 2001a: One-dimensional sitespecific forecasting of radiation fog. Part I: Model formulation and idealized sensitivity studies. Meteor. Appl., 8, 279–286, doi: 10.1017/S1350482701003036.

    Article  Google Scholar 

  • Clark, P. A., and W. P. Hopwood, 2001b: One-dimensional sitespecific forecasting of radiation fog. Part II: Impact of site observations. Meteor. Appl., 8, 287–296.

    Google Scholar 

  • Creighton, G., E. Kuchera, R. Adams-Selin, et al., 2014: AFWA Diagnostics in WRF. [Accessed 10 July 2017 at http://www2.mmm.ucar.edu/wrf/users/docs/AFWA_Diagnostics_in_WRF.pdf].

    Google Scholar 

  • Doran, J. A., P. J. Roohr, D. J. Beberwyk, et al., 1999: The MM5 at the Air Force Weather Agency—New products to support military operations. The 8th Conference on Aviation, Range, and Aerospace Meteorology, NOAA/NWS, Dallas, Texas.

    Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    Article  Google Scholar 

  • Fabbian, D., R. de Dear, and S. Lellyett, 2007: Application of artificial neural network forecasts to predict fog at Canberra International Airport. Wea. Forecasting, 22, 372–381, doi: 10.1175/WAF980.1.

    Article  Google Scholar 

  • Fels, S. B., and M. D. Schwarzkopf, 1981: An efficient, accurate al-gorithm for calculating CO2 15 μm band cooling rates. J. Geo-phys. Res., 86, 1205–1232, doi: 10.1029/JC086iC02p01205.

    Article  Google Scholar 

  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156, doi: 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    Article  Google Scholar 

  • Fu, G., P. Y. Li, J. G. Crompton, et al., 2010: An observational and modeling study of a sea fog event over the Yellow Sea on 1 August 2003. Meteor. Atmos. Phys., 107, 149–159, doi: 10.1007/s00703-010-0073-0.

    Article  Google Scholar 

  • Golding, B. W., 1993: A study of the influence of terrain on fog development. Mon. Wea. Rev., 121, 2529–2541, doi: 10.1175/1520-0493(1993)121<2529:ASOTIO>2.0.CO;2.

    Article  Google Scholar 

  • Gu, Y., K. N. Liou, S. C. Ou, et al., 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, doi: 10.1029/2010JD014574.

    Google Scholar 

  • Gultepe, I., and J. A. Milbrandt, 2010: Probabilistic parameterizations of visibility using observations of rain precipitation rate, relative humidity, and visibility. J. Appl. Meteor. Climatol., 49, 36–46, doi: 10.1175/2009JAMC1927.1.

    Article  Google Scholar 

  • Gultepe, I., M. D. Müller, and Z. Boybeyi, 2006: A new visibility parameterization for warm-fog applications in numerical weather prediction models. J. Appl. Meteor., 45, 1469–1480, doi: 10.1175/JAM2423.1.

    Article  Google Scholar 

  • Gultepe, I., R. Tardif, S. C. Michaelides, et al., 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 1121–1159, doi: 10.1007/s00024-007-0211-x.

    Article  Google Scholar 

  • Gultepe, I., B. Hansen, S. G. Cober, et al., 2009: The fog remote sensing and modeling field project. Bull. Amer. Meteor. Soc., 90, 341–359, doi: 10.1175/2008BAMS2354.1.

    Article  Google Scholar 

  • Gultepe, I., B. Zhou, J. Milbrandt, et al., 2015: A review on ice fog measurements and modeling. Atmos. Res., 151, 2–19, doi: 10.1016/j.atmosres.2014.04.014.

    Article  Google Scholar 

  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6- class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    Google Scholar 

  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, doi: 10.1175/MWR 3199.1.

    Article  Google Scholar 

  • Hu, H. Q., Q. H. Zhang, B. G. Xie, et al., 2014: Predictability of an advection fog event over North China. Part I: Sensitivity to initial condition differences. Mon. Wea. Rev., 142, 1803–1822, doi: 10.1175/MWR-D-13-00004.1.

    Article  Google Scholar 

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, et al., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, doi: 10.1029/2008JD009944.

    Google Scholar 

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    Article  Google Scholar 

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    Article  Google Scholar 

  • Kim, C. K., and S. S. Yum, 2012: A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the Weather Research and Forecasting Model. Bound.-Layer Meteor., 143, 481–505, doi: 10.1007/s10546-012-9706-9.

    Article  Google Scholar 

  • Li, Y. P., and Y. X. Zheng, 2015: Analysis of atmospheric turbulence in the upper layers of sea fog. Chinese J. Oceanol. Limnol., 33, 809–818, doi: 10.1007/s00343-015-4030-0.

    Article  Google Scholar 

  • Lim, K. S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612, doi: 10.1175/2009MWR2968.1.

    Article  Google Scholar 

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, doi: 10.1029/97JD00237.

    Google Scholar 

  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of oneand two-moment schemes. Mon. Wea. Rev., 137, 991–1007, doi: 10.1175/2008MWR2556.1.

    Article  Google Scholar 

  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397–407, doi: 10.1007/s10546-005-9030-8.

    Article  Google Scholar 

  • Niu, S. J., C. S. Lu, H. Y. Yu, et al., 2010: Fog research in China: An overview. Adv. Atmos. Sci., 27, 639–662, doi: 10.1007/s00376-009-8174-8.

    Article  Google Scholar 

  • Pagowski, M., I. Gultepe, and P. King, 2004: Analysis and modeling of an extremely dense fog event in southern Ontario. J. Appl. Meteor., 43, 3–16, doi: 10.1175/1520-0450(2004)043<0003:AAMOAE>2.0.CO;2.

    Article  Google Scholar 

  • Payra, S., and M. Mohan, 2014: Multirule based diagnostic approach for the fog predictions using WRF modelling tool. Adv. Meteor., 2014, 456065, doi: 10.1155/2014/456065.

    Article  Google Scholar 

  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 1383–1395, doi: 10.1175/JAM2539.1.

    Article  Google Scholar 

  • Radi, A., A. A. Al-Katheri, and K. Al-Chergui, 2008: Evaluation of United Arab Emirates WRF two-way nested model on a set of thick coastal fog situations. [Accessed 10 July 2017 at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2008/ab stracts/P8-06.pdf].

    Google Scholar 

  • Rémy, S., O. Pannekoucke, T. Bergot, et al., 2012: Adaptation of a particle filtering method for data assimilation in a 1D numerical model used for fog forecasting. Quart. J. Roy. Meteor. Soc., 138, 536–551, doi: 10.1002/qj.v138.663.

    Article  Google Scholar 

  • Román-Cascón, C., C. Yagüe, M. Sastre, et al., 2012: Observations and WRF simulations of fog events at the Spanish Northern Plateau. Adv. Sci. Res., 8, 11–18, doi: 10.5194/asr-8-11-2012.

    Article  Google Scholar 

  • Román-Cascón, C., G. J. Steeneveld, C. Yagüe, et al., 2016: Forecasting radiation fog at climatologically contrasting sites: Evaluation of statistical methods and WRF. Quart. J. Roy. Meteor. Soc., 142, 1048–1063, doi: 10.1002/qj.2016.142.issue-695.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR/TN-475+STR, doi: 10.5065/D68S4MVH.

    Google Scholar 

  • Steeneveld, G. J., R. J. Ronda, and A. A. M. Holtslag, 2015: The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Bound.-Layer Meteor., 154, 265–289, doi: 10.1007/s10546-014-9973-8.

    Article  Google Scholar 

  • Stoelinga, M. T., and T. T. Warner, 1999: Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event. J. Appl. Meteor., 38, 385–404, doi: 10.1175/1520-0450(1999)038<0385:NMSMSO>2.0.CO;2.

    Article  Google Scholar 

  • Stolaki, S., I. Pytharoulis, and T. Karacostas, 2012: A study of fog characteristics using a coupled WRF–COBEL model over Thessaloniki airport, Greece. Pure Appl. Geophys., 169, 961–981, doi: 10.1007/s00024-011-0393-0.

    Article  Google Scholar 

  • Tang, Y. M., R. Capon, R. Forbes, et al., 2009: Fog prediction using a very high resolution numerical weather prediction model forced with a single profile. Meteor. Appl., 16, 129–141, doi: 10.1002/met.v16:2.

    Article  Google Scholar 

  • Tardif, R., 2007: The impact of vertical resolution in the explicit numerical forecasting of radiation fog: A case study. Pure Appl. Geophys., 164, 1221–1240, doi: 10.1007/s00024-007-0216-5.

    Article  Google Scholar 

  • Tardif, R., and R. M. Rasmussen, 2007: Event-based climatology and typology of fog in the New York city region. J. Appl. Meteor. Climatol., 46, 1141–1168, doi: 10.1175/JAM2516.1.

    Article  Google Scholar 

  • Thompson, G., P. R. Field, R. M. Rasmussen, et al., 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, doi: 10.1175/2008MWR2387.1.

    Article  Google Scholar 

  • Tudor, M., 2010: Impact of horizontal diffusion, radiation and cloudiness parameterization schemes on fog forecasting in valleys. Meteor. Atmos. Phys., 108, 57–70, doi: 10.1007/s00703-010-0084-x.

    Article  Google Scholar 

  • Van der Velde, I. R., G. J. Steeneveld, B. G. J. W. Schreur, et al., 2010: Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon. Wea. Rev., 138, 4237–4253, doi: 10.1175/2010MWR3427.1.

    Article  Google Scholar 

  • von Glasow, R., and A. Bott, 1999: Interaction of radiation fog with tall vegetation. Atmos. Environ., 33, 1333–1346, doi: 10.1016/S1352-2310(98)00372-0.

    Article  Google Scholar 

  • Yuan, X., and Z. H. Chen, 2013: Statistics and monitoring analysis of advection fog at Shanghai Pudong Airport. J. Meteor. Sci., 33, 95–101, doi: 10.3969/2012jms.0149. (in Chinese)

    Google Scholar 

  • Zhou, B. B., 2011: Introduction to A New Fog Diagnostic Scheme. NCEP Office Note 466, 43 pp. [Accessed 10 July 2017 at www.emc.ncep.noaa.gov/officenotes/newernotes/on466.pdf].

    Google Scholar 

  • Zhou, B. B., and J. Du, 2010: Fog prediction from a multimodel mesoscale ensemble prediction system. Wea. Forecasting, 25, 303–322, doi: 10.1175/2009WAF2222289.1.

    Article  Google Scholar 

  • Zhou, B. B., J. Du, I. Gultepe, et al., 2012: Forecast of low visibility and fog from NCEP: Current status and efforts. Pure Appl. Geophys., 169, 895–909, doi: 10.1007/s00024-011-0327-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiyan Lin.

Additional information

Supported by the National Natural Science Foundation of China (4130511 and U1233138) and Safety Capability Enhancement Program of Civil Aviation Administration of China (TMSA1605).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Zhang, Z., Pu, Z. et al. Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model. J Meteorol Res 31, 874–889 (2017). https://doi.org/10.1007/s13351-017-6187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6187-2

Key words

Navigation