Circulation characteristics of persistent cold spells in central–eastern North America

Abstract

The circulation patterns of persistent cold weather spells with durations longer than 10 days in central–eastern North America (United States and Canada; 32°–52°N, 95°–65°W) are investigated by using NCEP reanalysis data from 1948 to 2014. The criteria for the persistent cold spells are: (1) three-day averaged temperature anomalies for the regional average over the central–eastern United States and Canada must be below the 10th percentile, and (2) such extreme cold spells must last at least 10 days. The circulation patterns associated with these cold spells are examined to find the common signals of these events. The circulation anomaly patterns of these cold spells are categorized based on the El Niño–Southern Oscillation, Arctic Oscillation (AO), and other climate indices. The atmospheric circulation patterns that favor the cold spells are identified through composites of geopotential height maps for the cold spells. Negative AO phases favor persistent cold spells. Phases of sea surface temperature (SST) modes that are associated with warm SSTs in the eastern extratropical Pacific also favor persistent cold events in the study region. Stratospheric polar vortex breakdown alone is not a good predictor for the regional extreme cold spells in central–eastern North America. The meridional dispersions of quasi-stationary Rossby waves in the Pacific–North America sector in terms of cut-off zonal wavenumber modulated by background flow are analyzed to provide insight into the difference in evolution of the cold spells under different mean AO phases. The waveguide for AO > 1 is in a narrow latitudinal band centered on 40°N, whereas the waveguide for AO <–1 is in a broader latitudinal band from 40° to 65°N. The circulation patterns and lower boundary conditions favorable for persistent cold spells identified by this study can be a stepping-stone for improving winter subseasonal forecasting in North America.

This is a preview of subscription content, log in to check access.

References

  1. Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584.

    Article  Google Scholar 

  2. Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere–troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 1661–1672.

    Article  Google Scholar 

  3. Bond, N. A., and D. E. Harrison, 2000: The Pacific decadal oscillation, air–sea interaction and central North Pacific winter atmospheric regimes. Geophys. Res. Lett., 27, 731–734.

    Article  Google Scholar 

  4. Bond, N. A., J. E. Overland, M. Spillane, et al., 2003: Recent shifts in the state of the North Pacific. Geophys. Res. Lett., 30, 2183, doi: 10.1029/2003GL018597.

    Article  Google Scholar 

  5. Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449–469, doi: 10.1175/JCLI 3996.1.

    Article  Google Scholar 

  6. DeWeaver, E., and S. Nigam, 2004: On the forcing of ENSO teleconnections by anomalous heating and cooling. J. Climate, 17, 3225–3235.

    Article  Google Scholar 

  7. Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 39, L06801, doi: 10.1029/2012GL051000.

    Article  Google Scholar 

  8. Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592–606.

    Article  Google Scholar 

  9. Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 1894–1902.

    Article  Google Scholar 

  10. Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere. Hoskins, B. J., and R. P. Pearce, Eds., Academic Press, New York, 127–168.

    Google Scholar 

  11. Higgins, R. W., A. Leetmaa, and V. E. Kousky, 2002: Relationships between climate variability and winter temperature extremes in the United States. J. Climate, 15, 1555–1572.

    Article  Google Scholar 

  12. Hurrell, J. W., Y. Kushnir, G. Ottersen, et al., 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Hurrell, J. W., Y. Kushnir, G. Ottersen, et al., Eds., American Geophysical Union, Washington DC, doi: 10.1029/134GM-01.

    Google Scholar 

  13. Jung, T., F. Vitart, L. Ferranti, et al., 2011: Origin and predictability of the extreme negative NAO winter of 2009/10. Geophys. Res. Lett., 38, L07701.

    Article  Google Scholar 

  14. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  15. Lindzen, R. S., 1986: Stationary planetary waves, blocking, and interannual variability. Adv. Geophys., 29, 251–273.

    Article  Google Scholar 

  16. Mitchell, D. M., L. J. Gray, J. Anstey, et al., 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 2668–2682, doi: 10.1175/JCLI-D-12-00030.1.

    Article  Google Scholar 

  17. Peng, S. L., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 1393–1408.

    Article  Google Scholar 

  18. Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and midlatitude weather. Geophys. Res. Lett., 40, 959–964.

    Article  Google Scholar 

  19. Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 1363–1392.

    Article  Google Scholar 

  20. Smith, T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  21. Smith, M. L., and A. J. McDonald, 2014: A quantitative measure of polar vortex strength using the function M. J. Geophys. Res., 119, 5966–5985.

    Google Scholar 

  22. Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15, 2340–2358.

    Article  Google Scholar 

  23. Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627.

    Article  Google Scholar 

  24. Thompson, D. W. J., S. Lee, and M. P. Baldwin, 2003: Atmospheric processes governing the Northern Hemisphere annular mode/North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Hurrell, J. W., Y. Kushnir, G. Ottersen, et al., Eds., American Geophysical Union, Washington D. C, 81–112.

    Google Scholar 

  25. Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proceedings of the 17th Climate Diagnostics Workshop, University of Oklahoma, Oklahoma, 52–57.

    Google Scholar 

  26. Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98 rank. Weather, 53, 315–324.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Li.

Additional information

Supported by the “Probing the Atmosphere of the High Arctic” Project of the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Manson, A.H., Li, Y. et al. Circulation characteristics of persistent cold spells in central–eastern North America. J Meteorol Res 31, 250–260 (2017). https://doi.org/10.1007/s13351-017-6146-y

Download citation

Key words

  • cold spell
  • quasi-stationary Rossby wave
  • ENSO
  • Arctic Oscillation