Skip to main content
Log in

Propagation and mechanisms of the quasi-biweekly oscillation over the Asian summer monsoon region

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The propagation and underlying mechanisms of the boreal summer quasi-biweekly oscillation (QBWO) over the entire Asian monsoon region are investigated, based on ECMWF Interim reanalysis (ERA-Interim) data, GPCP precipitation data, and an atmospheric general circulation model (AGCM). Statistical analyses indicate that the QBWO over the Asian monsoon region derives its main origin from the equatorial western Pacific and moves northwestward to the Bay of Bengal and northern India, and then northward to the Tibetan Plateau (TP) area, with a baroclinic vertical structure. Northward propagation of the QBWO is promoted by three main mechanisms: barotropic vorticity, boundary moisture advection, and surface sensible heating (SSH). It is dominated by the barotropic vorticity effect when the QBWO signals are situated to the south of 20°N. During the propagation taking place farther north toward the TP, the boundary moisture advection and SSH are the leading mechanisms. We use an AGCM to verify the importance of SSH on the northward propagation of the QBWO. Numerical simulations confirm the diagnostic conclusion that the equatorial western Pacific is the source of the QBWO. Importantly, the model can accurately simulate the propagation pathway of the QBWO signals over the Asian monsoon region. Simultaneously, sensitivity experiments demonstrate that the SSH over northern India and the southern slope of the TP greatly contributes to the northward propagation of the QBWO as far as the TP area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abhik, S., M. Halder, P. Mukhopadhyay, et al., 2013: A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis. Climate Dyn., 40, 1611–1624, doi: 10.1007/s00382-012-1425-x.

    Article  Google Scholar 

  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85–102, doi: 10.1007/s003820100161.

    Article  Google Scholar 

  • Bao, Q., P. F. Lin, T. J. Zhou, et al., 2013: The flexible global ocean–atmosphere–land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576, doi: 10.1007/s00376-012-2113-9.

    Article  Google Scholar 

  • Bellon, G., and A. H. Sobel, 2008: Instability of the axisymmetric monsoon flow and intraseasonal oscillation. J. Geophys. Res., 113(D7), D07108, doi: 10.1029/2007JD009291.

    Article  Google Scholar 

  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, et al., 1999: The effective number of spatial degrees of freedom of a timevarying field. J. Climate, 12, 1990–2009, doi: 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    Article  Google Scholar 

  • Chan, J. C. L., W. X. Ai, and J. J. Xu, 2002: Mechanisms responsible for the maintenance of the 1998 South China Sea summer monsoon. J. Meteor. Soc. Japan, 80, 1103–1113, doi: 10.2151/jmsj.80.1103.

    Article  Google Scholar 

  • Chatterjee, P., and B. N. Goswami, 2004: Structure, genesis, and scale selection of the tropical quasi-biweekly mode. Quart. J. Roy. Meteor. Soc., 130, 1171–1194, doi: 10.1256/qj.03.133.

    Article  Google Scholar 

  • Chen, B. D., J. J. Zhang, Z. B. Sun, et al., 1991: Dynamic effects of the Qinghai–Xizang Plateau on the atmospheric lowfrequency oscillation in the summer flow pattern. J. Nanjing Inst. Meteor., 14, 510–516. (in Chinese)

    Google Scholar 

  • Chen, T. C., and J. M. Chen, 1993: The 10–20-day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall. Mon. Wea. Rev., 121, 2465–2482, doi: 10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2.

    Article  Google Scholar 

  • Chen, T. C., and J. R. Chen, 1995: An observational study of the South China Sea monsoon during the 1979 summer: Onset and life cycle. Mon. Wea. Rev., 123, 2295–2318, doi: 10.1175/1520-0493(1995)123<2295:AOSOTS>2.0.CO;2.

    Article  Google Scholar 

  • Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.

    Article  Google Scholar 

  • DeMott, C. A., C. Stan, and D. A. Randall, 2013: Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J. Climate, 26, 1973–1992, doi: 10.1175/JCLI-D-12-00191.1.

    Article  Google Scholar 

  • Duan, A. M., J. Hu, and Z. X. Xiao, 2013: The Tibetan Plateau summer monsoon in the CMIP5 simulations. J. Climate, 26, 7747–7766, doi: 10.1175/JCLI-D-12-00685.1.

    Article  Google Scholar 

  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022, doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    Article  Google Scholar 

  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719, doi: 10.1002/(ISSN)1477-870X.

    Article  Google Scholar 

  • Feng, Z. Q., E. R. Reiter, and L. X. Chen, 1985: The atmospheric heat budget over the western part of the Tibetan Plateau during Monex, 1979. Adv. Atmos. Sci., 2, 455–468, doi: 10.1007/BF02678744.

    Article  Google Scholar 

  • Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan, 75, 180–186.

    Article  Google Scholar 

  • Fu, X. H., and B. Wang, 2004: The boreal-summer intraseasonal oscillations simulated in a hybrid coupled atmosphere–ocean model. Mon. Wea. Rev., 132, 2628–2649, doi: 10.1175/MWR2811.1.

    Article  Google Scholar 

  • Hahn, D. G., and S. Manabe, 1975: The role of mountains in the South Asian monsoon circulation. J. Atmos. Sci., 32, 1515–1541, doi: 10.1175/1520-0469(1975)032<1515:TROMIT> 2.0.CO;2.

    Article  Google Scholar 

  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a Global Climate Model. J. Climate, 6, 1825–1842, doi: 10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    Article  Google Scholar 

  • Hsu, H.-H., C.-H. Weng, and C.-H. Wu, 2004: Contrasting characteristics between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J. Climate, 17, 727–743, doi: 10.1175/1520-0442(2004)017< 0727:CCBTNA>2.0.CO;2.

    Article  Google Scholar 

  • Huffman, G. J., R. F. Adler, P. Arkin, et al., 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 5–20, doi: 10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    Article  Google Scholar 

  • Jia, X. L., and S. Yang, 2013: Impact of the quasi-biweekly oscillation over the western North Pacific on East Asian subtropical monsoon during early summer. J. Geophys. Res., 118, 4421–4434.

    Google Scholar 

  • Jiang, X. A., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 1022–1039, doi: 10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    Article  Google Scholar 

  • Kikuchi, K., and B. Wang, 2009: Global perspective of the quasibiweekly oscillation. J. Climate, 22, 1340–1359, doi: 10.1175/2008JCLI2368.1.

    Article  Google Scholar 

  • Koseki, S., M. Watanabe, and M. Kimoto, 2008: Role of the midlatitude air–sea interaction in orographically forced climate. J. Meteor. Soc. Japan, 86, 335–351, doi: 10.2151/jmsj.86.335.

    Article  Google Scholar 

  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I: Observational aspects. J. Atmos. Sci., 33, 1937–1954, doi: 10.1175/1520-0469(1976)033<1937: OOAMSP>2.0.CO;2.

    Article  Google Scholar 

  • Krishnamurti, T. N., and P. Ardanuy, 1980: The 10–20-day westward propagating mode and “breaks in the monsoons”. Tellus, 32, 15–26.

    Google Scholar 

  • Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50-day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 2088–2095, doi: 10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2.

    Article  Google Scholar 

  • Li, C. Y., and G. L. Li, 1997: Evolution of intraseasonal oscillation over the tropical western Pacific/South China Sea and its effect to the summer precipitation in southern China. Adv. Atmos. Sci., 14, 246–254, doi: 10.1007/s00376-997-0023-z.

    Article  Google Scholar 

  • Li, J., Z. Wang, G. Zhuang, et al., 2012: Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-dust storm in March 2010. Atmos. Chem. Phys., 12, 7591–7607, doi: 10.5194/acp-12-7591-2012.

    Article  Google Scholar 

  • Long, Z. X., and C. Y. Li, 2002: Interannual variations of tropical atmospheric 30–60-day low-frequency oscillation and ENSO cycle. Chinese J. Atmos. Sci., 26, 51–62.

    Google Scholar 

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708, doi: 10.1175/1520-0469(1971)028<0702: DOADOI>2.0.CO;2.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29, 1109–1123, doi: 10.1175/1520-0469(1972)029 <1109:DOGSCC>2.0.CO;2.

    Article  Google Scholar 

  • Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31, 3–42, doi: 10.1175/1520-0469(1974)031<0003:TEOMOT>2.0.CO;2.

    Article  Google Scholar 

  • Mao, J. Y., and J. C. L. Chan, 2005: Intraseasonal variability of the South China Sea summer monsoon. J. Climate, 18, 2388–2402, doi: 10.1175/JCLI3395.1.

    Article  Google Scholar 

  • Mao, J. Y., and G. X. Wu, 2006: Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer. Climate Dyn., 27, 815–830, doi: 10.1007/s00382-006-0164-2.

    Article  Google Scholar 

  • Murakami, T., and T. Nakazawa, 1985: Tropical 45-day oscillations during the 1979 Northern Hemisphere summer. J. Atmos. Sci., 42, 1107–1122, doi: 10.1175/1520-0469(1985) 042<1107:TDODTN>2.0.CO;2.

    Article  Google Scholar 

  • Murakami, T., T. Nakazawa, and J. H. He, 1984: On the 40–50-day oscillations during the 1979 Northern Hemisphere summer. Part I: Phase propagation. J. Meteor. Soc. Japan, 62, 440–468.

    Article  Google Scholar 

  • Nitta, T., 1983: Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon. J. Meteor. Soc. Japan, 61, 590–605.

    Article  Google Scholar 

  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15621–15634, doi: 10.1029/1999JC900068.

    Article  Google Scholar 

  • Nordeng, T. E., 1994: Extended Versions of the Convective Parameterization Scheme at ECMWF and Their Impact on the Mean and Transient Activity of the Model in the Tropics. ECMWF Tech. Memo., 206, 41 pp.

    Google Scholar 

  • Oleson, K. W., Y. J. Dai, G. Bonan, et al., 2004: Technical Description of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-461+STR.

    Google Scholar 

  • Roxy, M., and Y. Tanimoto, 2007: Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J. Meteor. Soc. Japan, 85, 349–358, doi: 10.2151/jmsj.85.349.

    Article  Google Scholar 

  • Simmons, A. J., S. M. Uppala, D. P. Dee, et al., 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF News letter, 110, 25–35.

    Google Scholar 

  • Song, X. L., 2005: The evaluation analysis of two kinds of mass flux cumulus parameterizations in climate simulation. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 145 pp. (in Chinese)

    Google Scholar 

  • Sun, A. J., G. L. Tang, and R. H. Huang, 1994: Low frequency oscillation characteristics of summers of 1983 and 1985. Scientia Atmospherica Sinica, 18, 576–585, doi: 10.3878/j.issn.1006-9895.1994.05.08. (in Chinese)

    Google Scholar 

  • Sun, G. W., and B. D. Chen, 1988: Oscillation characteristics and meridional propagation of atmospheric low frequency waves over the Qinghai–Xizang Plateau. Scientia Atmospherica Sinica, 12, 250–256, doi: 10.3878/j.issn.1006-9895.1988.03.04. (in Chinese)

    Google Scholar 

  • Sun, Z. A., 2011: Improving transmission calculations for the Edwards–Slingo radiation scheme using a correlated-k distribution method. Quart. J. Roy. Meteor. Soc., 137, 2138–2148, doi: 10.1002/qj.v137.661.

    Article  Google Scholar 

  • Sun, Z. A., and L. Rikus, 1999: Improved application of exponential sum fitting transmissions to inhomogeneous atmosphere. J. Geophys. Res., 104, 6291–6303, doi: 10.1029/1998JD 200095.

    Article  Google Scholar 

  • Tang, M. C., and E. R. Reiter, 1984: Plateau monsoons of the Northern Hemisphere: A comparison between North America and Tibet. Mon. Wea. Rev., 112, 617–637, doi: 10.1175/1520-0493(1984)112<0617:PMOTNH>2.0.CO;2.

    Article  Google Scholar 

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800, doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    Article  Google Scholar 

  • Vecchi, G. A., and D. E. Harrison, 2002: Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15, 1485–1493, doi: 10.1175/1520-0442(2002)015<1485:MBASSS>2.0.CO;2.

    Article  Google Scholar 

  • Wang, B., and X. S. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 72–86, doi: 10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    Article  Google Scholar 

  • Wang, M. R., and A. M. Duan, 2015: Quasi-biweekly oscillation over the Tibetan Plateau and its link with the Asian summer monsoon. J. Climate, 28, 4921–4940, doi: 10.1175/JCLI-D-14-00658.1.

    Article  Google Scholar 

  • Weare, B. C., and J. S. Nasstrom, 1982: Examples of extended empirical orthogonal function analyses. Mon. Wea. Rev., 110, 481–485, doi: 10.1175/1520-0493(1982)110<0481:EOEEOF>2.0.CO;2.

    Article  Google Scholar 

  • Webster, P. J., 1983: Mechanisms of monsoon low-frequency variability: Surface hydrological effect. J. Atmos. Sci., 40, 2110–2124, doi: 10.1175/1520-0469(1983)040<2110:MOMLFV>2.0.CO;2.

    Article  Google Scholar 

  • Wu, G. X., Y. M. Liu, Q. Zhang, et al., 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrol., 8, 770–789.

    Google Scholar 

  • Xu, G. Q., and Q. G. Zhu, 2000: Analysis of features of atmospheric LFO structures over the Tibetan Plateau in 1998. J. Nanjing Inst. Meteor., 23, 505–513. (in Chinese)

    Google Scholar 

  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budget. J. Atmos. Sci., 30, 611–627, doi: 10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    Article  Google Scholar 

  • Yang, J., Q. Bao, B. Wang, et al., 2014: Distinct quasi-biweekly features of the subtropical East Asian monsoon during early and late summers. Climate Dyn., 42, 1469–1486, doi: 10.1007/s00382-013-1728-6.

    Article  Google Scholar 

  • Yeh, T. C., 1950: The circulation of the high troposphere over China in the winter of 1945–46. Tellus, 2, 173–183.

    Article  Google Scholar 

  • Yeh, T. C., S. W. Lo, and P. C. Chu, 1957: The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta Meteor. Sinica, 28, 108–121.

    Google Scholar 

  • Zhang, P. F., G. P. Li, X. H. Fu, et al., 2014: Clustering of Tibetan Plateau vortices by 10–30-day intraseasonal oscillation. Mon. Wea. Rev., 142, 290–300, doi: 10.1175/MWR-D-13-00137.1.

    Article  Google Scholar 

  • Zhou, B., J. H. He, and H. M. Xu, 2000: LFO characteristics of meteorological elements over Tibetan Plateau and the relations with regional summer rainfall. J. Nanjing Inst. Meteor., 23, 93–100. (in Chinese)

    Google Scholar 

  • Zhou, L., and R. Murtugudde, 2014: Impact of northwardpropagating intraseasonal variability on the onset of Indian summer monsoon. J. Climate, 27, 126–138, doi: 10.1175/JCLI-D-13-00214.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Additional information

Supported by the Startup Fund for Introducing Talent of Nanjing University of Information Science & Technology (2015r032), Open Research Fund of the Plateau Atmosphere and Environment Key Laboratory of Sichuan Province (PAEKL-2017-K4), and National Natural Science Foundation of China (91337218 and 41605039).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, J. & Duan, A. Propagation and mechanisms of the quasi-biweekly oscillation over the Asian summer monsoon region. J Meteorol Res 31, 321–335 (2017). https://doi.org/10.1007/s13351-017-6131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6131-5

Key words

Navigation