Skip to main content
Log in

A new prediction model for grain yield in Northeast China based on spring North Atlantic Oscillation and late-winter Bering Sea ice cover

  • Special Collection on Climate System Research in China
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Accurate estimations of grain output in the agriculturally important region of Northeast China are of great strategic significance for guaranteeing food security. New prediction models for maize and rice yields are built in this paper based on the spring North Atlantic Oscillation index and the Bering Sea ice cover index. The year-to-year increment is first forecasted and then the original yield value is obtained by adding the historical yield of the previous year. The multivariate linear prediction model of maize shows good predictive ability, with a low normalized root-mean-square error (NRMSE) of 13.9%, and the simulated yield accounts for 81% of the total variance of the observation. To improve the performance of the multivariate linear model, a combined forecasting model of rice is built by considering the weight of the predictors. The NRMSE of the model is 12.9% and the predicted rice yield explains 71% of the total variance. The corresponding cross-validation test and independent samples test further demonstrate the efficiency of the models. It is inferred that the statistical models established here by applying year-to-year increment approach could make rational prediction for the maize and rice yield in Northeast China before harvest. The present study may shed new light on yield prediction in advance by use of antecedent large-scale climate signals adequately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrieu, C., N. de Freitas, A. Doucet, et al., 2003: An introduction to MCMC for machine learning. Machine Learning, 50, 5–43, doi: 10.1023/A:1020281327116.

    Article  Google Scholar 

  • Ann, B. S., S. S. Cho, and C. Y. Kim, 2000: The integrated methodology of rough set theory and artificial neural network for business failure prediction. Expert Systems with Applications, 18, 65–74, doi: 10.1016/S0957-4174(99)00053-6.

    Article  Google Scholar 

  • Barnett, T. P., and R. Preisendorfer, 1987: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon. Wea. Rev., 115, 1825–1850, doi: 10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2.

    Article  Google Scholar 

  • Becker-Reshef, I., E. Vermote, M. Lindeman, et al., 2010: A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114, 1312–1323, doi: 10.1016/j.rse.2010.01.010.

    Article  Google Scholar 

  • Chang, C.-P., and T. Li, 2000: A theory for the tropical tropospheric biennial oscillation. J. Atmos. Sci., 57, 2209–2224, doi: 10.1175/1520-0469(2000)057<2209:ATFTTT>2.0.CO;2.

    Article  Google Scholar 

  • Chen, C. Q., C. R. Qian, A. X. Deng, et al., 2012: Progressive and active adaptations of cropping system to climate change in Northeast China. European Journal of Agronomy, 38, 94–103, doi: 10.1016/j.eja.2011.07.003.

    Article  Google Scholar 

  • Cheng, Y. Q., and P. Y. Zhang, 2005: Regional patterns changes of Chinese grain production and response of commodity grain base in Northeast China. Scientia Geographica Sinica, 25, 513–520. (in Chinese)

    Google Scholar 

  • Fan, K., 2010: A prediction model for Atlantic named storm frequency using a year-by-year increment approach. Wea. Forecasting, 25, 1842–1851, doi: 10.1175/2010WAF2222406.1.

    Article  Google Scholar 

  • Fan, K., and H. J. Wang, 2009: A new approach to forecasting typhoon frequency over the western North Pacific. Wea. Forecasting, 24, 974–986, doi: 10.1175/2009WAF2222194.1.

    Article  Google Scholar 

  • Fan, K., and B. Q. Tian, 2013: Prediction of wintertime heavy snow activity in Northeast China. Chinese Sci. Bull., 58, 1420–1426, doi: 10.1007/s11434-012-5502-7.

    Article  Google Scholar 

  • Fan, K., M. J. Lin, and Y. Z. Gao, 2009: Forecasting the summer rainfall in North China using the year-to-year increment approach. Sci. China (Ser. D), 52, 532–539, doi: 10.1007/s11430-009-0040-0.

    Article  Google Scholar 

  • Gouveia, C., R. M. Trigo, C. C. DaCamara, et al., 2008: The North Atlantic Oscillation and European vegetation dynamics. Int. J. Climatol., 28, 1835–1847, doi: 10.1002/joc.v28:14.

    Article  Google Scholar 

  • Hansen, J. W., and M. Indeje, 2004: Linking dynamic seasonal climate forecasts with crop simulation for maize yield prediction in semi-arid Kenya. Agricultural and Forest Meteorology, 125, 143–157, doi: 10.1016/j.agrformet.2004.02.006.

    Article  Google Scholar 

  • He, S. P., and H. J. Wang, 2013: Oscillating relationship between the East Asian winter monsoon and ENSO. J. Climate, 26, 9819–9838, doi: 10.1175/JCLI-D-13-00174.1.

    Article  Google Scholar 

  • Hsu, C. C., and C. Y. Chen, 2003: Regional load forecasting in Taiwan—Applications of artificial neural networks. Energy Conversion and Management, 44, 1941–1949, doi: 10.1016/S0196-8904(02)00225-X.

    Article  Google Scholar 

  • Iizumi, T., M. Yokozawa, and M. Nishimori, 2009: Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach. Agricultural and Forest Meteorology, 149, 333–348, doi: 10.1016/j.agrformet.2008.08.015.

    Article  Google Scholar 

  • Iizumi, T., H. Sakuma, M. Yokozawa, et al., 2013: Prediction of seasonal climate-induced variations in global food production. Nature Climate Change, 3, 903–908.

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K., Platter, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 866 pp.

  • Li, C. Y., S. Q. Sun, and M. Q. Mu, 2001: Origin of the TBO-interaction between anomalous East-Asian winter monsoon and ENSO cycle. Adv. Atmos. Sci., 18, 554–566, doi: 10.1007/s00376-001-0044-y.

    Article  Google Scholar 

  • Li, F., and H. J. Wang, 2012: Autumn sea ice cover, winter Northern Hemisphere annular mode, and winter precipitation in Eurasia. J. Climate, 26, 3968–3981.

    Article  Google Scholar 

  • Li, F., and H. J. Wang, 2013a: Relationship between Bering Sea ice cover and East Asian winter monsoon year-to-year variations. Adv. Atmos. Sci., 30, 48–56, doi: 10.1007/s00376-012-2071-2.

    Article  Google Scholar 

  • Li, F., and H. J. Wang, 2013b: Spring surface cooling trend along the East Asian coast after the late 1990s. Chinese Sci. Bull., 58, 3847–3851, doi: 10.1007/s11434-013-5853-8.

    Article  Google Scholar 

  • Li, F., and H. J. Wang, 2014: Autumn Eurasian snow depth, autumn Arctic sea ice cover and East Asian winter monsoon. Int. J. Climatol., 34, 3616–3625, doi: 10.1002/joc.3936.

    Article  Google Scholar 

  • Li, S. F., Y. Lian, S. B. Chen, et al., 2012: Distribution of extreme cool events over Northeast China in early summer and the related dynamical processes. Scientia Geographica Sinica, 32, 752–758. (in Chinese)

    Google Scholar 

  • Lieth, H., 1973: Primary production: Terrestrial ecosystems. Human Ecology, 1, 303–332, doi: 10.1007/BF01536729.

    Article  Google Scholar 

  • Liu, Y. Q., 2014: A regression model for smoke plume rise of prescribed fires using meteorological conditions. Journal of Applied Meteorology and Climatology, 53, 1961–1975, doi: 10.1175/JAMC-D-13-0114.1.

    Article  Google Scholar 

  • Liu, Z. J., X. G. Yang, K. G. Hubbard, et al., 2012: Maize potential yields and yield gaps in the changing climate of Northeast China. Global Change Biology, 18, 3441–3454, doi: 10.1111/gcb.2012.18.issue-11.

    Article  Google Scholar 

  • Lobell, D., 2010: Crop responses to climate: Time-series models. Climate Change and Food Security. Lobell, D., and M. Burke, Eds., Springer, Netherlands, 85–98.

    Chapter  Google Scholar 

  • Lobell, D. B., and M. B. Burke, 2010: On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150, 1443–1452, doi: 10.1016/j.agrformet.2010.07.008.

    Article  Google Scholar 

  • Lobell, D. B., C. B. Field, K. N. Cahill, et al., 2006: Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agricultural and Forest Meteorology, 141, 208–218, doi: 10.1016/j.agrformet. 2006.10.006.

    Article  Google Scholar 

  • Lobell, D. B., K. N. Cahill, and C. B. Field, 2007: Historical effects of temperature and precipitation on California crop yields. Climate Change, 81, 187–203, doi: 10.1007/s10584-006-9141-3.

    Article  Google Scholar 

  • Lobell, D. B., W. Schlenker, and J. Costa-Roberts, 2011: Climate trends and global crop production since 1980. Science, 333, 616–620, doi: 10.1126/science.1204531.

    Article  Google Scholar 

  • Ma, H. B., and Q. Q. Chu, 2007: Study on fluctuation and influence factors of grain production in China. Journal of Anhui Agricultural Sciences, 35, 8735–8737. (in Chinese)

    Google Scholar 

  • Ma, J. Y., Y. L. Xu, and J. Pan, 2012: Analysis of agro-meteorological disasters tendency variation and the impacts on grain yield over Northeast China. Chinese J. Agrometeor., 33, 283–288. (in Chinese)

    Google Scholar 

  • Mason, C. H., and W. D. Perreault Jr., 1991: Collinearity, power, and interpretation of multiple regression analysis. Journal of Marketing Research, 28, 268–280, doi: 10.2307/3172863.

    Article  Google Scholar 

  • Masutomi, Y., K. Takahashi, H. Harasawa, et al., 2009: Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models. Agriculture, Ecosystems & Environment, 131, 281–291.

    Article  Google Scholar 

  • Mi, N., Y. S. Zhang, F. Cai, et al., 2012: Modelling the impacts of future climate change on maize productivity in Northeast China. Journal of Arid Land Resources and Environment, 26, 117–123. (in Chinese)

    Google Scholar 

  • Mitchell, R. A. C., D. W. Lawlor, V. J. Mitchell, et al., 1995: Effects of elevated CO2 concentration and increased temperature on winter wheat: Test of ARCWHEAT1 simulation model. Plant, Cell and Environment, 18, 736–748, doi: 10.1111/pce.1995.18.issue-7.

    Article  Google Scholar 

  • Mkhabela, M. S., P. Bullock, S. Raj, et al., 2011: Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agricultural and Forest Meteorology, 151, 385–393, doi: 10.1016/j.agrformet.2010.11.012.

    Article  Google Scholar 

  • Moriasi, D. N., J. G. Arnold, M. W. Van Liew, et al., 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900, doi: 10.13031/2013.23153.

    Article  Google Scholar 

  • National Bureau of Statistics, 2012: China Rural Statistical Yearbook. China Statistics Press, 133–153.

    Google Scholar 

  • Osborne, T. M., D. M. Lawrence, A. J. Challinor, et al., 2007: Development and assessment of a coupled crop-climate model. Global Change Biology, 13, 169–183, doi: 10.1111/j.1365-2486.2006.01274.x.

    Article  Google Scholar 

  • Parry, M., C. Rosenzweig, and M. Livermore, 2005: Climate change, global food supply and risk of hunger. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 2125–2138, doi: 10.1098/rstb.2005.1751.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), doi: 10.1029/2002JD002670.

    Google Scholar 

  • Rosenberg, N. J., 2010: Climate change, agriculture, water resources: What do we tell those that need to know. Climate Change, 100, 113–117, doi: 10.1007/s10584-010-9823-8.

    Article  Google Scholar 

  • Schlenker, W., and M. J. Roberts, 2009: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences of the United States of America, 106, 15594–15598, doi: 10.1073/pnas.0906865106.

    Article  Google Scholar 

  • Schlenker, W., and D. B. Lobell, 2010: Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 5, 014010, doi: 10.1088/1748-9326/5/1/014010.

    Article  Google Scholar 

  • Shen, B. Z., S. Liu, Y. Lian, et al., 2011: An investigation into 2009 summer low temperature in Northeast China and its association with prophase changes of the air–sea system. Acta Meteor. Sinica, 29, 320–333.

    Google Scholar 

  • Steiger, J. H., 1980: Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87, 245–251, doi: 10.1037/0033-2909.87.2.245.

    Article  Google Scholar 

  • Stroeve, J. C., M. C. Serreze, F. Fetterer, et al., 2005: Tracking the Arctic’s shrinking ice cover: Another extreme September minimum in 2004. Geophys. Res. Lett., 32, L04501.

    Article  Google Scholar 

  • Sun, J. Q., and H. J. Wang, 2012: Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J. Geophys. Res., 117(D8), D08110.

    Google Scholar 

  • Sun, J. Q., H. J. Wang, and W. Yuan, 2008: Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature. J. Geophys. Res., 113(D15), D15107, doi: 10.1029/2007JD009626.

    Article  Google Scholar 

  • Sun, J. Q., H. J. Wang, and W. Yuan, 2009: Role of the tropical Atlantic sea surface temperature in the decadal change of the summer North Atlantic Oscillation. J. Geophys. Res., 114(D20), D20110, doi: 10.1029/2009JD012395.

    Article  Google Scholar 

  • Sun, Q., S. Zhang, J. Zhang, et al., 2010: Current situation of rice production in Northeast China and countermeasures. North Rice, 40, 72–74.

    Google Scholar 

  • Wang, H. J., Y. Zhang, and X. M. Lang, 2010: On the predictand of short-term climate prediction. Climatic Environ. Res., 15, 225–228. (in Chinese)

    Google Scholar 

  • Willmott, C. J., 1982: Some comments on the evaluation of model performance. Bull. Amer. Meteor. Soc., 63, 1309–1313, doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.

    Article  Google Scholar 

  • Xu, W. X., and J. F. Chen, 1991: Regression analysis for yield of dryland spring wheat. Journal of “Ba Yi” Agricultural College, 14, 50–55. (in Chinese)

    Google Scholar 

  • Yang, S. Y., F. H. Sun, and J. Z. Ma, 2008: Evolvement of precipitation extremes in Northeast China on the background of climate warming. Scientia Geographica Sinica, 28, 224–228. (in Chinese)

    Google Scholar 

  • Yang, X., Z. Liu, and F. Chen, 2010: The possible effects of global warming on cropping systems in China. I: The possible effects of climate warming on northern limits of cropping systems and crop yields in China. Scientia Agricultura Sinica, 43, 329–336.

    Google Scholar 

  • Yao, F. M., Y. L. Xu, E. D. Lin, et al., 2007: Assessing the impacts of climate change on rice yields in the main rice areas of China. Climate Change, 80, 395–409, doi: 10.1007/s10584-006-9122-6.

    Article  Google Scholar 

  • Yao, Z. F., X. T. Liu, F. Yang, et al., 2009: The combinatorial predicting model of the grain yields in the northeast of China. Acta Agriculturae Boreali-Sinica, 24, 215–219. (in Chinese)

    Google Scholar 

  • You, L. Z., M. W. Rosegrant, S. Wood, et al., 2009: Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology, 149, 1009–1014, doi: 10.1016/j.agrformet.2008.12.004.

    Article  Google Scholar 

  • Zhang, H. Y., G. L. Liu, and Y. He, 2002: Combined forecasting model and its application in grain yield forecasting. Journal of Agricultural Mechanization Research, 166–167, 173. (in Chinese)

    Google Scholar 

  • Zhang, J. P., Y. X. Zhao, C. Y. Wang, et al., 2008: Simulation of maize production under climate change scenario in Northeast China. Chinese Journal of Eco-Agriculture, 16, 1448–1452. (in Chinese)

    Article  Google Scholar 

  • Zhang, Y. C., and L. Q. Zhang, 2005: Precipitation and temperature probability characteristics in climatic and ecological transition zone of Northeast China in recent 50 years. Scientia Geographica Sinica, 25, 561–566. (in Chinese)

    Google Scholar 

  • Zhao, J. F., X. G. Yang, and Z. J. Liu, 2009: Influence of climate warming on serious low temperature and cold damage and cultivation pattern of spring maize in Northeast China. Acta Ecologica Sinica, 29, 6544–6551. (in Chinese)

    Google Scholar 

  • Zhou, M. Z., and H. J. Wang, 2014: Late winter sea ice in the Bering Sea: Predictor for maize and rice production in Northeast China. Journal of Applied Meteorology and Climatology, 53, 1183–1192, doi: 10.1175/JAMC-D-13-0242.1.

    Article  Google Scholar 

  • Zhou, M. Z., H. J. Wang, S. Yang, et al., 2013: Influence of springtime North Atlantic Oscillation on crops yields in Northeast China. Climate Dyn., 41, 3317–3324, doi: 10.1007/s00382-012-1597-4.

    Article  Google Scholar 

  • Zou, Z. H., Y. Yun, and J. N. Sun, 2006: Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences, 18, 1020–1023, doi: 10.1016/S1001-0742(06)60032-6.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the editors of the journal and the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengzi Zhou.

Additional information

Supported by the National Natural Science Foundation of China (41210007 and 41421004) and Basic Research and Operation Fund of Chinese Academy of Meteorological Sciences (2016Y007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Wang, H. & Huo, Z. A new prediction model for grain yield in Northeast China based on spring North Atlantic Oscillation and late-winter Bering Sea ice cover. J Meteorol Res 31, 409–419 (2017). https://doi.org/10.1007/s13351-017-6114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6114-6

Key words

Navigation