Skip to main content
Log in

Connection between the Silk Road Pattern in July and the following January temperature over East Asia

  • Special Collection on Climate System Research in China
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This study investigates a cross-seasonal influence of the Silk Road Pattern (SRP) in July and discusses the related mechanism. Both the reanalysis and observational datasets indicate that the July SRP is closely related to the following January temperature over East Asia during 1958/59–2001/02. Linear regression results reveal that, following a higher-than-normal SRP index in July, the Siberian high, Aleutian low, Urals high, East Asian trough, and meridional shear of the East Asian jet intensify significantly in January. Such atmospheric circulation anomalies are favorable for northerly wind anomalies over East Asia, leading to more southward advection of cold air and causing a decrease in temperature. Further analysis indicates that the North Pacific sea surface temperature anomalies (SSTAs) might play a critical role in storing the anomalous signal of the July SRP. The significant SSTAs related to the July SRP weaken in October and November, re-emerge in December, and strengthen in the following January. Such an SSTA pattern in January can induce a surface anomalous cyclone over North Pacific and lead to dominant convergence anomalies over northwestern Pacific. Correspondingly, significant divergence anomalies appear, collocated in the upper-level troposphere in situ. Due to the advection of vorticity by divergent wind, which can be regarded as a wave source, a stationary Rossby wave originates from North Pacific and propagates eastward to East Asia, leading to temperature anomalies through its influence on the large-scale atmospheric circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122–137, doi: 10.1175/1520-0485(1995) 025<0122:AMFTRO>2.0.CO;2.

    Article  Google Scholar 

  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 1893–1910, doi: 10.1175/1520-0442(2002)015<1893:CTTJSW> 2.0.CO;2.

    Article  Google Scholar 

  • Chan, J. C. L., and C. Y. Li, 2004: The East Asian winter monsoon. East Asian Monsoon. C. P. Chang, Ed., World Scientific Publishing Co. Pet. Ltd., Singapore, 54–106.

    Chapter  Google Scholar 

  • Charney, J. G., and A. Eliassen, 1949: A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus, 1, 38–54.

    Article  Google Scholar 

  • Chen, G. S., R. H. Huang, and L. T. Zhou, 2013: Baroclinic instability of the Silk Road Pattern induced by thermal damping. J. Atmos. Sci., 70, 2875–2893, doi: 10.1175/JAS-D-12-0326.1.

    Article  Google Scholar 

  • Choi, Y. W., J. B. Ahn, and V. N. Kryjov, 2016: November seesaw in northern extratropical sea level pressure and its linkage to the preceding wintertime Arctic Oscillation. Int. J. Climatol., 36, 1375–1386, doi: 10.1002/joc.2016.36.issue-3.

    Article  Google Scholar 

  • Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483–3505, doi: 10.1175/JCLI3473.1.

    Article  Google Scholar 

  • Ding, Y. H., Y. J. Liu, S. J. Liang, et al., 2014: Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J. Meteor. Res., 28, 693–713, doi: 10.1007/s13351-014-4046-y.

    Article  Google Scholar 

  • Enomoto, T., 2004: Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet. J. Meteor. Soc. Japan, 82, 1019–1034, doi: 10.2151/jmsj.2004.1019.

    Article  Google Scholar 

  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157–178, doi: 10.1256/qj.01.211.

    Article  Google Scholar 

  • Feng, C., and B. Y. Wu, 2015: Enhancement of winter Arctic warming by the Siberian high over the past decade. Atmos. Oceanic Sci. Lett., 8, 257–263.

    Google Scholar 

  • Gu, W., C. Y. Li, W. J. Li, et al., 2009: Interdecadal unstationary relationship between NAO and East China’s summer precipitation patterns. Geophys. Res. Lett., 36, doi: 10.1029/2009 GL038843.

    Google Scholar 

  • He, S. P., and H. J. Wang, 2012a: Analysis of the decadal and interdecadal variations of the East Asian winter monsoon as simulated by 20 coupled models in IPCC AR4. Acta Meteor. Sinica, 26, 476–488, doi: 10.1007/s13351-012-0407-6.

    Article  Google Scholar 

  • He, S. P., and H. J. Wang, 2012b: An integrated East Asian winter monsoon index and its interannual variability. Chinese J. Atmos. Sci., 36, 523–538. (in Chinese)

    Google Scholar 

  • He, S. P., and H. J. Wang, 2013: Impact of the November/December Arctic Oscillation on the following January temperature in East Asia. J. Geophys. Res., 118, 12981–912998.

    Google Scholar 

  • He, S. P., and H. J. Wang, 2016: Linkage between the East Asian January temperature extremes and the preceding Arctic Oscillation. Int. J. Climatol., 36, 1026–1032, doi: 10.1002/joc.4399.

    Article  Google Scholar 

  • He, S. P., H. J. Wang, and J. P. Liu, 2013: Changes in the relationship between ENSO and Asia–Pacific midlatitude winter atmospheric circulation. J. Climate, 26, 3377–3393, doi: 10.1175/JCLI-D-12-00355.1.

    Article  Google Scholar 

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    Article  Google Scholar 

  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying Flow. J. Atmos. Sci., 50, 1661–1671, doi: 10.1175/1520-0469(1993)050<1661:RWPOAR> 2.0.CO;2.

    Article  Google Scholar 

  • Hsu, H.-H., and S.-M. Lin, 2007: Asymmetry of the tripole rainfall pattern during the East Asian summer. J. Climate, 20, 4443–4458, doi: 10.1175/JCLI4246.1.

    Article  Google Scholar 

  • Jhun, J.-G., and E.-J. Lee, 2004: A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711–726, doi: 10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2.

    Article  Google Scholar 

  • Kim, H.-J., and J.-B. Ahn, 2012: Possible impact of the autumnal North Pacific SST and November AO on the East Asian winter temperature. J. Geophys. Res., 117, D12104.

    Google Scholar 

  • Kryjov, V. N., 2002: The influence of the winter Arctic Oscillation on the northern Russian spring temperature. Int. J. Climatol., 22, 779–785, doi: 10.1002/(ISSN)1097-0088.

    Article  Google Scholar 

  • Li, F., and H. J. Wang, 2012: Predictability of the East Asian winter monsoon interannual variability as indicated by the DEMETER CGCMS. Adv. Atmos. Sci., 29, 441–454, doi: 10.1007/s00376-011-1115-3.

    Article  Google Scholar 

  • Li, F., and H. J. Wang, 2013: Relationship between Bering sea ice cover and East Asian winter monsoon year-to-year variations. Adv. Atmos. Sci., 30, 48–56, doi: 10.1007/s00376-012-2071-2.

    Article  Google Scholar 

  • Li, Y. Q., and S. Yang, 2010: A dynamical index for the East Asian winter monsoon. J. Climate, 23, 4255–4262, doi: 10.1175/2010JCLI3375.1.

    Article  Google Scholar 

  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation–West Pacific teleconnection pattern: Maturephase structure and winter impacts. J. Climate, 21, 1979–1997, doi: 10.1175/2007JCLI2048.1.

    Article  Google Scholar 

  • Lu, R. Y., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54, 44–55, doi: 10.1034/j.1600-0870.2002.00248.x.

    Article  Google Scholar 

  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693–712, doi: 10.1002/(ISSN)1097-0088.

    Article  Google Scholar 

  • Namias, J., and R. M. Born, 1970: Temporal coherence in North Pacific sea surface temperature patterns. J. Geophys. Res., 75, 5952–5955, doi: 10.1029/JC075i030p05952.

    Article  Google Scholar 

  • Nan, S. L., P. Zhao, S. Yang, et al., 2009: Springtime tropospheric temperature over the Tibetan Plateau and evolutions of the tropical Pacific SST. J. Geophys. Res., 114, D10104895–896.

    Google Scholar 

  • Ogi, M., K. Yamazaki, and Y. Tachibana, 2004: The summertime annular mode in the Northern Hemisphere and its linkage to the winter mode. J. Geophys. Res., 109, D20114409–420.

    Article  Google Scholar 

  • Orsolini, Y. J., L. Zhang, D. H. W. Peters, et al., 2015: Extreme precipitation events over North China in August 2010 and their link to eastward-propagating wave-trains across Eurasia: Observations and monthly forecasting. Quart. J. Roy. Meteor. Soc., 141, 3097–3105, doi: 10.1002/qj.2594.

    Article  Google Scholar 

  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217–229, doi: 10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 44071063–1082.

    Article  Google Scholar 

  • Rogers, J. C., 1981: The North Pacific Oscillation. Int. J. Climatol., 1, 39–57, doi: 10.1002/(ISSN)1097-0088a.

    Article  Google Scholar 

  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228–1251, doi: 10.1175/1520-0469 (1988)045<1228:TGOGRF>2.0.CO;2.

    Article  Google Scholar 

  • Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627, doi: 10.1175/1520-0469(2001) 058<0608:AFOAPI>2.0.CO;2.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi: 10.1029/98GL00950.

    Article  Google Scholar 

  • Uppala, S. M., P. M. Kållberg, A. J. Simmons, et al., 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi: 10.1256/qj.04.176.

    Article  Google Scholar 

  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 53–84.

    Google Scholar 

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812, doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    Article  Google Scholar 

  • Wang, H. J., and S. P. He, 2012: Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chin. Sci. Bull., 57, 1–6, doi: 10.1007/s11434-011-9935-1.

    Article  Google Scholar 

  • Wang, H. J., and S. P. He, 2015: The North China/northeastern Asian severe summer drought in 2014. J. Climate, 28, 6667–6681, doi: 10.1175/JCLI-D-15-0202.1.

    Article  Google Scholar 

  • Zhang, P. Q., S. Yang, and V. E. Kousky, 2005: South Asian high and Asian–Pacific–American climate teleconnection. Adv. Atmos. Sci., 22, 915–923, doi: 10.1007/BF02918690.

    Article  Google Scholar 

  • Zhao, P., X. D. Zhang, Y. F. Li, et al., 2009: Remotely modulated tropical–North Pacific ocean–atmosphere interactions by the South Asian high. Atmos. Res., 94, 45–60, doi: 10.1016/j.atmosres. 2009.01.018.

    Article  Google Scholar 

  • Zhao, P., S. Yang, M. Q. Jian, et al., 2011: Relative controls of Asian–Pacific summer climate by Asian land and tropical–North Pacific sea surface temperature. J. Climate, 24, 4165–4188, doi: 10.1175/2011JCLI3915.1.

    Article  Google Scholar 

  • Zhao, P., B. Wang, J. P. Liu, et al., 2016: Summer precipitation anomalies in Asia and North America induced by Eurasian nonmonsoon land heating versus ENSO. Scientific Reports, 6, 21346, doi: 10.1038/srep21346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping He.

Additional information

Supported by the National Key Research and Development Program of China (2016YFA0600703) and National Natural Science Foundation of China (41505073).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Liu, Y. & Wang, H. Connection between the Silk Road Pattern in July and the following January temperature over East Asia. J Meteorol Res 31, 378–388 (2017). https://doi.org/10.1007/s13351-017-6064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6064-z

Key words

Navigation