Skip to main content
Log in

The role of nonlinear forcing singular vector tendency error in causing the “spring predictability barrier” for ENSO

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

With the Zebiak–Cane model, the present study investigates the role of model errors represented by the nonlinear forcing singular vector (NFSV) in the “spring predictability barrier” (SPB) phenomenon in ENSO prediction. The NFSV-related model errors are found to have the largest negative effect on the uncertainties of El Ni˜no prediction and they can be classified into two types: the first is featured with a zonal dipolar pattern of SST anomalies (SSTA), with the western poles centered in the equatorial central–western Pacific exhibiting positive anomalies and the eastern poles in the equatorial eastern Pacific exhibiting negative anomalies; and the second is characterized by a pattern almost opposite to the first type. The first type of error tends to have the worst effects on El Ni˜no growth-phase predictions, whereas the latter often yields the largest negative effects on decaying-phase predictions. The evolution of prediction errors caused by NFSVrelated errors exhibits prominent seasonality, with the fastest error growth in spring and/or summer; hence, these errors result in a significant SPB related to El Ni˜no events. The linear counterpart of NFSVs, the (linear) forcing singular vector (FSV), induces a less significant SPB because it contains smaller prediction errors. Random errors cannot generate an SPB for El Ni˜no events. These results show that the occurrence of an SPB is related to the spatial patterns of tendency errors. The NFSV tendency errors cause the most significant SPB for El Ni˜no events. In addition, NFSVs often concentrate these large value errors in a few areas within the equatorial eastern and central–western Pacific, which likely represent those areas sensitive to El Ni˜no predictions associated with model errors. Meanwhile, these areas are also exactly consistent with the sensitive areas related to initial errors determined by previous studies. This implies that additional observations in the sensitive areas would not only improve the accuracy of the initial field but also promote the reduction of model errors to greatly improve ENSO forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barkmeijer, J., T. Iversen, and T. N. Palmer, 2003: Forcing singular vectors and other sensitive model structures. Quart. J. Roy. Meteor. Soc., 129, 2401–2423.

    Article  Google Scholar 

  • Blanke, B., J. D. Neelin, and D. Gutzler, 1997: Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J. Climate, 10, 1473–1486.

    Article  Google Scholar 

  • Blumenthal, M. B., 1991: Predictability of a coupled ocean–atmosphere model. J. Climate, 4, 766–784.

    Article  Google Scholar 

  • Chen, D. K., S. E., Zebiak, A. J. Busalacchi, et al., 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269, 1699–1702.

    Article  Google Scholar 

  • Chen, D. K., M. A. Cane, A. Kaplan, et al., 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733–736.

    Article  Google Scholar 

  • Dommenget, D., and Y. S. Yu, 2016: The seasonally changing cloud feedbacks contribution to the ENSO seasonal phase-locking. Climate Dyn., doi: 10.1007/s00382-016-3034-6.

    Google Scholar 

  • Dommenget, D., T., Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño–Southern Oscillation. Climate Dyn., 40, 2825–2847.

    Article  Google Scholar 

  • Duan Wansuo and Zhang Rui, 2010: Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model. Adv. Atmos. Sci., 27, 1003–1013.

    Article  Google Scholar 

  • Duan, W. S., and C. Wei, 2012: The “spring predictability barrier” for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int. J. Climatol., 33, 1280–1292, doi: 10.1002/joc.3513.

    Article  Google Scholar 

  • Duan, W. S., and F. F. Zhou, 2013: Non-linear forcing singular vector of a two-dimensional quasigeostrophic model. Tellus A, 65, 18452.

    Article  Google Scholar 

  • Duan, W. S., and P. Zhao, 2015: Revealing the most disturbing tendency error of Zebiak–Cane model associated with El Niño predictions by nonlinear forcing singular vector approach. Climate Dyn., 44, 2351–2367, doi: 10.1007/s00382-014-2369-0.

    Article  Google Scholar 

  • Duan, W. S., and J. Y. Hu, 2016: The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: Results from an earth system model. Climate Dyn., 46, 3599–3615, doi: 10.1007/s00382-015-2789-5.

    Article  Google Scholar 

  • Duan, W. S., X. C. Liu, K. Y. Zhu, et al., 2009: Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J. Geophys. Res., 114, C04022, doi: 10.1029/2008JC004925.

    Google Scholar 

  • Flügel, M., and P. Chang, 1998: Does the predictability of ENSO depend on the seasonal cycle? J. Atmos. Sci., 55, 3230–3243.

    Article  Google Scholar 

  • Gebbie, G., and E. Tziperman, 2009: Predictability of SST-modulated westerly wind bursts. J. Climate, 22, 3894–3909.

    Article  Google Scholar 

  • Jin, E. K., J. L. Kinter III, B. Wang, et al., 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647–664.

    Article  Google Scholar 

  • Kirtman, B. P., J. Shukla, M. Balmaseda, et al., 2002: Current status of ENSO forecast skill: A report to the climate variability and predictability (CLIVAR) Numerical Experimentation Group (NEG). CLIVAR Working Group on seasonal to interannual prediction, 31 pp. (Available online at http://www.cliver.org/publications/wgpreports/wgsip/nin o3/report.html.)

    Google Scholar 

  • Kleeman, R., 1991: A simple model of the atmospheric response to ENSO sea surface temperature anomalies. J. Atmos. Sci., 48, 3–19.

    Article  Google Scholar 

  • Latif, M., D. Anderson, T. Barnett, et al., 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14375–14393.

    Article  Google Scholar 

  • Latif, M., T. P. Barnett, M. A. Cane, et al., 1994: A review of ENSO prediction studies. Climate Dyn., 9, 167–179.

    Article  Google Scholar 

  • Lau, K. M., and S. Yang, 1996: The Asian monsoon and predictability of the tropical ocean–atmosphere system. Quart. J. Roy. Meteor. Soc., 122, 945–957.

    Google Scholar 

  • Levine, A. F. Z., and M. J., McPhaden, 2015: The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys. Res. Lett., 42, 5034–5041.

    Article  Google Scholar 

  • Liu, Z. Y., 2002: A simple model study of ENSO suppression by external periodic forcing. J. Climate, 15, 1088–1098.

    Article  Google Scholar 

  • Lopez, H., and B. P. Kirtman, 2014: WWBs, ENSO predictability, the spring barrier and extreme events. J. Geophys. Res., 19, 10114–10138, doi: 10.1002/2014JD021908.

    Google Scholar 

  • Luo, J. J., S. Masson, S. K. Behera, et al., 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 84–93.

    Article  Google Scholar 

  • Marshall, A. G., O. Alves, and H. H. Hendon, 2009: A coupled GCM analysis of MJO activity at the onset of El Niño. J. Atmos. Sci., 66, 966–983.

    Article  Google Scholar 

  • McCreary, J. P. Jr., and D. L. T. Anderson, 1991: An overview of coupled ocean–atmosphere models of El Niño and the Southern Oscillation. J. Geophy. Res., 96, 3125–3150.

    Article  Google Scholar 

  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, doi: 10.1029/2003GL016 872.

    Article  Google Scholar 

  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 1740–1745.

    Article  Google Scholar 

  • Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122, 1405–1446.

    Article  Google Scholar 

  • Mu Mu, Duan Wansuo, and Wang Jiacheng, 2002: The predictability problems in numerical weather and climate prediction. Adv. Atmos. Sci., 19, 191–204.

    Article  Google Scholar 

  • Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10, 493–501.

    Article  Google Scholar 

  • Mu, M., H. Xu, and W. S. Duan, 2007a: A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak–Cane model. Geophys. Res. Lett., 34, L03709, doi: 10.1029/2006GL-27412.

    Article  Google Scholar 

  • Mu, M., W. S. Duan, and B. Wang, 2007b: Seasondependent dynamics of nonlinear optimal error growth and El Niño–Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112, D10113, doi: 10.1029/2005JD006981.

    Article  Google Scholar 

  • Mu, M., Y. S. Yu, H. Xu, et al., 2014: Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Niño predictions. Theor. Appl. Climatol., 115, 461–469. doi: 10.1007/s00704-013-0909-x.

    Article  Google Scholar 

  • Penland, C, and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6, 1067–1076.

    Article  Google Scholar 

  • Roads, J. O., 1987: Predictability in the extended range. J. Atmos. Sci., 44, 3495–3527.

    Article  Google Scholar 

  • Samelson, R. M., and E. Tziperman, 2001: Instability of the chaotic ENSO: The growth-phase predictability barrier. J. Atmos. Sci., 58, 3613–3625.

    Article  Google Scholar 

  • Stein, K., N. Schneider, A. Timmermann, et al., 2010: Seasonal synchronization of ENSO events in a linear stochastic model. J. Climate, 23, 5629–5643.

    Article  Google Scholar 

  • Stuecker, M. F., A. Timmermann, F. F. Jin, et al., 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nature Geoscience, 6, 540–544.

    Article  Google Scholar 

  • Stuecker, M. F., F. F. Jin, A. Timmermann, et al., 2015: Combination mode dynamics of the anomalous northwest pacific anticyclone. J. Climate, 28, 1093–1111.

    Article  Google Scholar 

  • Syu, H. H., and J. D. Neelin, 2000: ENSO in a hybrid coupled model. Part I: Sensitivity to physical parametrizations. Climate Dyn., 16, 19–34.

    Article  Google Scholar 

  • Tang, Y. M., R. Kleeman, and A. M. Moore, 2008: Comparison of information-based measures of forecast uncertainty in ensemble ENSO prediction. J. Climate, 21, 230–247.

    Article  Google Scholar 

  • Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Niño/Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124, 1985–2004.

    Google Scholar 

  • Webster, P. J., 1995: The annual cycle and the predictability of the tropical coupled ocean–atmosphere system. Meteor. Atmos. Phys., 56, 33–55.

    Article  Google Scholar 

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926.

    Article  Google Scholar 

  • Williams, P. D., 2005: Modelling climate change: The role of unresolved processes. Philos. Trans. Roy. Soc. London, 363, 2931–2946.

    Article  Google Scholar 

  • Wu, D. H., D. L. T. Anderson, and M. K. Davey, 1993: ENSO variability and external impacts. J. Climate, 6, 1703–1717.

    Article  Google Scholar 

  • Xue, Y., M. A. Cane, S. E. Zebiak, et al., 1994: On the prediction of ENSO: A study with a low-order Markov model. Tellus A, 46, 512–528.

    Article  Google Scholar 

  • Yu, L. S., R. A. Weller, and W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108, 3128, doi: 10.1029/2002JC001498.

    Article  Google Scholar 

  • Yu, Y. S., W. S. Duan, H. Xu, et al., 2009: Dynamics of nonlinear error growth and season-dependent predictability of El Niño events in the Zebiak–Cane model. Quart. J. Roy. Meteor. Soc., 135, 2146–2160.

    Article  Google Scholar 

  • Yu, Y. S., M. Mu, and W. S. Duan, 2012a: Does model parameter error cause a significant “Spring Predictability Barrier” for El Niño events in the Zebiak–Cane Model? J. Climate, 25, 1263–1277.

    Article  Google Scholar 

  • Yu, Y. S., M. Mu, W. S. Duan, et al., 2012b: Contribution of the location and spatial pattern of initial error to uncertainties in El Niño predictions. J. Geophys. Res., 117, C06018, doi: 10.1029/2011JC007758.

    Google Scholar 

  • Zavala-Garay, J., A. M. Moore, and R. Kleeman, 2004: Influence of stochastic forcing on ENSO prediction. J. Geophys. Res., 109, C11007, doi: 10.1029/2004 JC002406.

    Article  Google Scholar 

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.

    Article  Google Scholar 

  • Zhang, R. H., S. E. Zebiak, R. Kleeman, et al., 2003: A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30, doi: 10.1029/2003GL018010.

    Google Scholar 

  • Zheng, F., and J. Zhu., 2010: Coupled assimilation for an intermediated coupled ENSO prediction model. Ocean Dynamics, 60, 1061–1073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu  (徐 辉).

Additional information

Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY201306018), National Natural Science Foundation of China (41230420 and 41525017), and National Program on Global Change and Air–Sea Interactions (GASI-IPOVAI-06).

Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY201306018), National Natural Science Foundation of China (41230420 and 41525017), and National Program on Global Change and Air–Sea Interactions (GASI-IPOVAI-06).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, W., Zhao, P., Hu, J. et al. The role of nonlinear forcing singular vector tendency error in causing the “spring predictability barrier” for ENSO. J Meteorol Res 30, 853–866 (2016). https://doi.org/10.1007/s13351-016-6011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-016-6011-4

Key words

Navigation