Skip to main content

What controls early or late onset of tropical North Atlantic hurricane season?

Abstract

The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season. The interannual variation of this hurricane onset date is examined for the period 1979-2013. It is found that the onset date has a marked interannual variation. The standard deviation of the interannual variation of the onset day is 17.5 days, with the climatological mean onset happening on July 23.

A diagnosis of tropical cyclone (TC) genesis potential index (GPI) indicates that the major difference between an early and a late onset group lies in the maximum potential intensity (MPI). A further diagnosis of the MPI shows that it is primarily controlled by the local SST anomaly (SSTA). Besides the SSTA, vertical shear and mid-tropospheric relative humidity anomalies also contribute significantly to the GPI difference between the early and late onset groups.

It is found that the anomalous warm (cold) SST over the tropical Atlantic, while uncorrelated with the Niño3 index, persists from the preceding winter to concurrent summer in the early (late) onset group. The net surface heat flux anomaly always tends to damp the SSTA, which suggests that ocean dynamics may play a role in maintaining the SSTA in the tropical Atlantic. The SSTA pattern with a maximum center in northeastern tropical Atlantic appears responsible for generating the observed wind and moisture anomalies over the main TC development region. A further study is needed to understand the initiation mechanism of the SSTA in the Atlantic.

This is a preview of subscription content, access via your institution.

References

  1. Avila, L. A., and R. J. Pasch, 1995: Atlantic tropical systems of 1993. Mon. Wea. Rev., 123, 887–896.

    Article  Google Scholar 

  2. Cai Ninghao, Xu Xin, Song Lili, et al., 2014: Dynamic impact of the vertical shear of gradient wind on the tropical cyclone boundary layer wind field. J. Meteor. Res., 28, 127–138.

    Google Scholar 

  3. Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 4819–4834.

    Article  Google Scholar 

  4. Chu Huiyun and Wu Rongsheng, 2013: Environmental influences on the intensity change of tropical cyclones in the western North Pacific. J. Meteor. Res., 27, 335–343.

    Google Scholar 

  5. DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088.

    Article  Google Scholar 

  6. DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219–233.

    Article  Google Scholar 

  7. Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steadystate model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976.

    Article  Google Scholar 

  8. Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139–1152.

    Article  Google Scholar 

  9. Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

    Google Scholar 

  10. Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269.

    Article  Google Scholar 

  11. Fu, B., T. Li, M. S. Peng, et al., 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763–780.

    Article  Google Scholar 

  12. Fu, B., M. S. Peng, T. Li, et al., 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 1067–1080.

    Article  Google Scholar 

  13. Ge, X. Y., T. Li, and X. Q. Zhou, 2007: Tropical cyclone energy dispersion under vertical shears. Geophys. Res. Lett., 34, L23807, doi: 10.1029/2007GL031867.

    Google Scholar 

  14. Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 1169–1187.

    Article  Google Scholar 

  15. Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, et al., 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474–479.

    Article  Google Scholar 

  16. Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans. James Glaisher House, 155–218.

    Google Scholar 

  17. Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30-mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 1649–1668.

    Article  Google Scholar 

  18. Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

    Article  Google Scholar 

  19. Klotzbach, P. J., 2011: El Niño–southern oscillation's impact on Atlantic basin hurricanes and U. S. landfalls. J. Climate, 24, 1252–1263.

    Article  Google Scholar 

  20. Knaff, J. A., S. A. Seseske, M. DeMaria, et al., 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 2503–2510.

    Article  Google Scholar 

  21. Knapp, K. R., M. C. Kruk, D. H. Levinson, et al., 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363–376.

    Article  Google Scholar 

  22. Kossin, J. P., 2008: Is the North Atlantic hurricane season getting longer? Geophys. Res. Lett., 35, L23705.

    Article  Google Scholar 

  23. Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 1093–1102.

    Article  Google Scholar 

  24. Li, T., 2012: Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclones: Formation, Triggers, and Control. Oouchi, K., and H. Fudeyasu, Eds. Nova Science Publishers, Inc., 61–94.

    Google Scholar 

  25. Li, Z., W. D. Yu, T. Li, et al., 2013: Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle. J. Climate, 26, 1033–1046.

    Article  Google Scholar 

  26. Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.

    Google Scholar 

  27. Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436.

    Article  Google Scholar 

  28. Peng, M. S., B. Fu, T. Li, et al., 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Wea. Rev., 140, 1047–1066.

    Article  Google Scholar 

  29. Ramsay, H. A., and A. H. Sobel, 2011: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183–193.

    Article  Google Scholar 

  30. Reynolds, R. W., T. M. Smith, C. Y. Liu, et al., 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496.

    Article  Google Scholar 

  31. Shapiro, L. J., 1987: Month-to-month variability of the Atlantic tropical circulation and its relationship to tropical storm formation. Mon. Wea. Rev., 115, 2598–2614.

    Article  Google Scholar 

  32. Wilson, R. M., 1999: Statistical aspects of major (intense) hurricanes in the Atlantic basin during the past 49 hurricane seasons (1950–1998): Implications for the current season. Geophys. Res. Lett., 26, 2957–2960.

    Article  Google Scholar 

  33. Wing, A. A., A. H. Sobel, and S. J. Camargo, 2007: Relationship between the potential and actual intensities of tropical cyclones on interannual timescales. Geophys. Res. Lett., 34, L08810.

    Google Scholar 

  34. Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. OAFlux Project Technical Report OA-2008-01, Woods Hole Oceanographic Institution, Massachusetts, 64 pp.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tim Li.

Additional information

Supported by the National (Key) Basic Research and Development (973) Program of China (2015CB453200), National Natural Science Foundation of China (41475084), ONR Grant (N00014-16-12260), NRL Grant (N00173-13-1-G902), Jiangsu Natural Science Key Project (BK20150062), Jiangsu Shuang-Chuang Team (R2014SCT001), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (14KJB170015), the Startup Foundation for Introducing Talent of NUIST (2013x018), and Civil Aviation Center Program (KDQC1302). The International Pacific Research Center is partially sponsored by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). This is SOEST contribution number 9619, IPRC contribution number 1186, and ESMC number 103.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuo, H., Li, T., Liu, J. et al. What controls early or late onset of tropical North Atlantic hurricane season?. J Meteorol Res 30, 298–311 (2016). https://doi.org/10.1007/s13351-016-5119-x

Download citation

Key words

  • onset of a hurricane season
  • genesis potential index
  • TC maximum potential intensity