Skip to main content
Log in

Underestimation of oceanic warm cloud occurrences by the Cloud Profiling Radar aboard CloudSat

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The Cloud Profiling Radar (CPR) onboard CloudSat is an active sensor specifically dedicated to cloud detection. Compared to passive remote sensors, CPR plays a unique role in investigating the occurrence of multi-layer clouds and depicting the internal vertical structure of clouds. However, owing to contamination from ground clutter, CPR reflectivity signals are invalid in the lowest 1 km above the surface, leading to numerous missed detections of warm clouds. In this study, by using 1-yr CPR and MODIS (Moderate Resolution Imaging Spectroradiometer) synchronous data, those CPR-missed oceanic warm clouds that are identified as cloudy by MODIS are examined. It is demonstrated that CPR severely underestimates the occurrence of oceanic warm clouds, with a global-average miss rate of about 0.43. Over the tropical and subtropical oceans, the CPR-missed clouds tend to occur in regions with relatively low sea surface temperature. CPR misses almost all warm clouds with cloud tops lower than 1 km, and the miss rate reduces with increasing cloud top. As for clouds with cloud tops higher than 2 km, the negative bias of CPR-captured warm cloud occurrence falls below 3%. The cloud top height of CPR-missed warm clouds ranges from 0.6 to 1.2 km, and these clouds mostly have evidently small optical depths and droplet effective radii. The vertically integrated cloud liquid water content of CPR-missed warm clouds is smaller than 50 g m−2. It is also revealed that CPR misses some warm clouds that have small optical depths or small droplet sizes, besides those limited in the boundary layer below about 1 km due to ground clutter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, S. A., R. E. Holz, R. Frey, et al., 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 1073–1086.

    Article  Google Scholar 

  • Barker, H. W., G. L. Stephens, and Q. Fu, 1999: The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteor. Soc., 125, 2127–2152.

    Article  Google Scholar 

  • Bony, S., and J.-L. Dufresne, 2005: Oceanic boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi: 10.1029/2005GL023851.

    Article  Google Scholar 

  • Chan, M. A., and J. C. Comiso, 2011: Cloud features detected by MODIS but not by CloudSat and CALIOP. Geophys. Res. Lett., 38, L24813, doi: 10.1029/2011gl050063.

    Article  Google Scholar 

  • Charlson, R. J., J. E. Lovelock, M. O. Andreae, et al., 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655–661.

    Article  Google Scholar 

  • Dong Xiquan, Xi Baike, Kennedy A., et al., 2014: A 19-month record of marine aerosol-cloud-radiation properties derived from DOE ARM mobile facility deployment at the Azores. Part I: Cloud fraction and single-layered MBL cloud properties. J. Climate, 27, 3665–3682.

    Article  Google Scholar 

  • Gao Wenhua, Sui Chung-hsiung, and Hu Zhijin, 2014: A study of macrophysical and microphysical properties of warm clouds over the Northern Hemisphere using CloudSat/CALIPSO data. J. Geophys. Res., 119, 3268–3280.

    Google Scholar 

  • Han Ding, Yan Wei, Ye Jing, et al., 2013: Analyzing cloud, precipitation, and thermal structure characteristics of typhoons in eastern Pacific based on CloudSat satellite data. Chinese J. Atmos. Sci., 37, 691–704. (in Chinese)

    Google Scholar 

  • Hartmann, D. L., and D. A. Short, 1980: On the use of earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci., 37, 1233–1250.

    Article  Google Scholar 

  • Holz, R. E., S. A. Ackerman, F. W. Nagle, et al., 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, doi: 10.1029/2008JD009837.

    Google Scholar 

  • Huang Yi, S. T. Siems, M. J. Manton, et al., 2012: The structure of low-altitude clouds over the southern Ocean as seen by CloudSat. J. Climate, 25, 2535–2546.

    Article  Google Scholar 

  • Jensen, M. P., A. M. Vogelmann, W. D. Collins, et al., 2008: Investigation of regional and seasonal variations in marine boundary layer cloud properties from MODIS observations. J. Climate, 21, 4955–4973.

    Article  Google Scholar 

  • Kubar, T. L., D. E. Waliser, and J.-L. Li, 2011: Boundary layer and cloud structure controls on tropical low cloud cover using A-train satellite data and ECMWF analyses. J. Climate, 24, 194–215.

    Article  Google Scholar 

  • Liu, C., and E. J. Zipser, 2009: “Warm rain” in the tropics: Seasonal and regional distribution based on 9 years of TRMM data. J. Climate, 22, doi: 10.1175/2008JCLI2641.1, 767–779.

    Article  Google Scholar 

  • Liu Qi, Fu Yunfei, and Feng Sha, 2010: Geographical patterns of the cloud amount derived from the ISCCP and their correlation with the NCEP reanalysis datasets. Acta Meteor. Sinica, 68, 689–704. (in Chinese)

    Google Scholar 

  • Liu Shuang, Heygster G., and Zhang Suping, 2010: Comparison of CloudSat cloud liquid water paths in Arctic summer using ground-based microwave radiometer. J. Ocean. Univ. China, 9, 333–342.

    Article  Google Scholar 

  • Luo Yali, Zhang Renhe, and Wang Hui, 2009: Comparing occurrences and vertical structures of hydrometeors between eastern China and the Indian monsoon region using CloudSat/CALIPSO data. J. Climate, 22, 1052–1064.

    Article  Google Scholar 

  • Mace, G. G., R. Marchand, and Q. Zhang, et al., 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34, L09808, doi: 10.1029/2006GL029017.

    Article  Google Scholar 

  • Marchand, R., G. G. Mace, T. Ackerman, et al., 2008: Hydrometeor detection using Cloudsat—An earthorbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519–533.

    Article  Google Scholar 

  • Minnis, P., S. Sun-Mack, D. F. Young, et al., 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data. Part I: Algorithms. IEEE Trans. Geosci. Remote. Sens., 49, 4374–4400.

    Article  Google Scholar 

  • Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part II: Geographical and seasonal variations. J. Climate, 11, 383–403.

    Article  Google Scholar 

  • Peng Jie, Zhang Hua, and Shen Xinyong, 2013: Analysis of vertical structure of clouds in East Asia with CloudSat data. Chinese J. Atmos. Sci., 27, 91–100. (in Chinese)

    Google Scholar 

  • Platnick, S., M. D. King, S. A. Ackerman, et al., 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459–473.

    Article  Google Scholar 

  • Schumacher, C., and R. A. Houze Jr., 2003: The TRMM precipitation radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 1519–1524.

    Article  Google Scholar 

  • Sun-Mack, S., P. Minnis, Y. Chen, et al., 2008: Boundary layer lapse rate in cloudy areas derived using CALIPSO data. Presentation material, CALIPSO Science Team Meeting, Paris, France. March, 2008.

    Google Scholar 

  • Sun-Mack, S., P. Minnis, Y. Chen, et al., 2014: Regional apparent boundary layer lapse rates determined from CALIPSO and MODIS data for cloud-height determination. J. Appl. Meteor. Climatol., 53, 990–1011.

    Article  Google Scholar 

  • Tanelli, S., S. L. Durden, E. Im, et al., 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 3560–3573.

    Article  Google Scholar 

  • Wang Hui, Luo Yali, and Zhang Renhe, 2011: Analyzing seasonal variation of clouds over the Asian monsoon regions and the Tibetan Plateau region using Cloud- Sat/CALIPSO data. Chinese J. Atmos. Sci., 35, 1117–1131. (in Chinese)

    Google Scholar 

  • Wang Shuaihui, Han Zhigang, Yao Zhigang, et al., 2011: An analysis of cloud types and macroscopic characteristics over China and its neighborhood based on the CloudSat data. Acta Meteor. Sinica, 69, 883–899. (in Chinese)

    Google Scholar 

  • Weisz, E., Li Jun, Menzel W. P., et al., 2007: Comparison of AIRS, MODIS, CloudSat, and CALIPSO cloud top height retrievals. Geophys. Res. Lett., 34, L17811, doi: 10.1029/2007GL030676.

    Article  Google Scholar 

  • Xi Baike, Dong Xiquan, P. Minnis, et al., 2014: Comparison of marine boundary layer cloud properties from CERES-MODIS Edition 4 and DOE ARM AMF measurements at the Azores. J. Geophys. Res., 119, 9509–9529.

    Google Scholar 

  • Yi Mingjian, Fu Yunfei, Liu Peng, et al., 2014: Deep convective clouds over the northern Pacific and their relationship with oceanic cyclones. Adv. Atmos. Sci., 32, 821–830, doi: 10.1007/s00376-014-4056-9.

    Article  Google Scholar 

  • Yin Jinfang, Wang Donghai, Zhai Guoqing, et al., 2013: Observational characteristics of cloud vertical profiles over the continent of East Asia from the Cloud- Sat data. Acta Meteor. Sinica, 27, 26–39, doi: 10.1007/s13351-013-0104-0.

    Article  Google Scholar 

  • Zhang, G. J., A. M. Vogelmann, M. P. Jensen, et al., 2010: Relating satellite-observed cloud properties from MODIS to meteorological conditions for marine boundary layer clouds. J. Climate, 23, 1374–1391.

    Article  Google Scholar 

  • Zhang, M. H., W. Y. Lin, S. A. Klein, et al., 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, doi: 10.1029/2004JD005021.

    Google Scholar 

  • Zuidema, P., D. Painemal, S. de Szoeke, et al., 2009: Stratocumulus cloud-top height estimates and their climatic implications. J. Climate, 22, 4652–4666.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Liu  (刘奇).

Additional information

Supported by the National Natural Science Foundation of China (41175032).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Liu, Q. & Zhou, L. Underestimation of oceanic warm cloud occurrences by the Cloud Profiling Radar aboard CloudSat. J Meteorol Res 29, 576–593 (2015). https://doi.org/10.1007/s13351-015-5027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-015-5027-5

Keywords

Navigation