Skip to main content
Log in

An overview of passive and active dust detection methods using satellite measurements

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

In this paper, the methods to detect dust based on passive and active measurements from satellites have been summarized. These include the visible and infrared (VIR) method, thermal infrared (TIR) method, microwave polarized index (MPI) method, active lidar-based method, and combined lidar and infrared measurement (CLIM) method. The VIR method can identify dust during daytime. Using measurements at wavelengths of 8.5, 11.0, and 12.0 µm, the TIR method can distinguish dust from other types of aerosols and cloud, and identify the occurrence of dust over bright surfaces and during night. Since neither the VIR nor the TIR method can penetrate ice clouds, they cannot detect dust beneath ice clouds. The MPI method, however, can identify about 85% of the dust beneath ice clouds. Meanwhile, the active lidar-based method, which uses the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data and five-dimensional probability distribution functions, can provide very high-resolution vertical profiles of dust aerosols. Nonetheless, as the signals from dense dust and thin clouds are similar in the CALIOP measurements, the lidar-based method may fail to distinguish between them, especially over dust source regions. To address this issue, the CLIM method was developed, which takes the advantages of both TIR measurements (to discriminate between ice cloud and dense dust layers) and lidar measurements (to detect thin dust and water cloud layers). The results obtained by using the new CLIM method show that the ratio of dust misclassification has been significantly reduced. Finally, a concept module for an integrated multi-satellites dust detection system was proposed to overcome some of the weaknesses inherent in the single-sensor dust detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, S. A., 1997: Remote sensing aerosols using satellite infrared observations. J. Geophys. Res., 102, 17069–17079.

    Article  Google Scholar 

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.

    Article  Google Scholar 

  • Chen, B., J. Huang, P. Minnis, et al., 2010: Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements. Atmos. Chem. Phys., 10, 4241–4251, doi: 10.5194/acp-10-4241-2010.

    Article  Google Scholar 

  • Chen, S., J. P. Huang, C. Zhao, et al., 2013: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res., 118, 797–812, doi: 10.1002/jgrd.50122.

    Google Scholar 

  • Chomette, O., M. Legrand, and B. Marticorena, 1999: Determination of the wind speed threshold for the emission of desert dust using satellite remote sensing in the thermal infrared. J. Geophys. Res., 104, 31207–31215.

    Article  Google Scholar 

  • Dulac, F., D. Tanre, G. Bergametti, et al., 1992: Assessment of the African airborne dust mass over the western Mediterranean Sea using meteosat data. J. Geophys. Res., 97, 2489–2506.

    Article  Google Scholar 

  • Evan, A. T., A. K. Heidinger, and M. J. Pavolonis, 2006: Development of a new over-water advanced very high resolution radiometer dust detection algorithm. Int. J. Remote Sens., 27, 3903–3924.

    Article  Google Scholar 

  • Fu, P. J., J. Huang, C. Li, et al., 2008: The properties of dust aerosol and reducing tendency of the dust storms in Northwest China. Atmos. Environ., 42, 5896–5904, doi: 10.1016/j.atmosenv.2008.03.041.

    Article  Google Scholar 

  • —, S. Y. Zhong, J. P. Huang, et al., 2012: An observational study of aerosol and turbulence properties during dust storms in Northwest China. J. Geophys. Res., 117, D09202, doi: 10.1029/2011JD016696.

    Google Scholar 

  • Fu, Q., T. Thorsen, J. Su, et al., 2009: Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations. J. Quart. Spectrosc. Radiat. Transfer, 110, 1640–1653, doi: 10.1016/j.jqsrt.2009.03.010.

    Article  Google Scholar 

  • Ge, J., J. Huang, F. Weng, et al., 2008: Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan desert. Atmos. Chem. Phys., 8, 4903–4909.

    Article  Google Scholar 

  • Gong, S. L., X. Y. Zhang, T. L. Zhao, et al., 2003: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia.2: Model simulation and validation. J. Geophys. Res., 108, ACH4.1–ACH4.19, doi: 10.1029/2002JD002633.

    Google Scholar 

  • Hansell, R. A., S. C. Tsay, N. C. Hsu, et al., 2012: An assessment of the surface longwave direct radiative effect of airborne dust in Zhangye, China, during the Asian monsoon years field experiment (2008). J. Geophys. Res., 117, D00K39, doi: 10.1029/20111JD017370.

    Google Scholar 

  • Hu Xiuqing, Lu Naimeng, Qiu Hong, et al., 2003: Duststorm monitoring using geostationary meteorological satellites. Climatic Environ. Res., 8, 101–106. (in Chinese)

    Google Scholar 

  • —, —, and Zhang Peng, 2007: Remote sensing and detection of dust storm in China using the thermal bands of geostationary meteorological satellite. Quart. J. Appl. Meteor., 18, 266–275. (in Chinese)

    Google Scholar 

  • —, —, T. Niu, et al., 2008: Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time forecast in Asia. Atmos. Chem. Phys., 8, 1649–1659.

    Article  Google Scholar 

  • Hu, Y., M. Vaughan, Z. Liu, et al., 2007a: The depolarization-attenuated backscatter relation: CALIPSO lidar measurements vs. theory. Opt. Express, 15, 5327–5332.

    Article  Google Scholar 

  • —, —, C. Mcclain, et al., 2007b: Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements. Atmos. Chem. Phys., 7, 3353–3359.

    Article  Google Scholar 

  • —, D. Winker, M. Vaughan, et al., 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 2293–2309.

    Article  Google Scholar 

  • Hu, Y. X., S. Rodier, K. M. Xu, et al., 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, doi: 10.1029/2009JD012384.

    Google Scholar 

  • Huang, J. P., Y. Wang, T. Wang, et al., 2006a: Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia. Prog. Nat. Sci., 16, 1084–1089.

    Article  Google Scholar 

  • —, P. Minnis, B. Lin, et al., 2006b: Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett., 33, L06824, doi: 10.1029/2005GL024724.

    Google Scholar 

  • —, B. Lin, P. Minnis, et al., 2006c: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, L19802, doi: 10.1029/2006GL026561.

    Article  Google Scholar 

  • —, P. Minnis, Y. H. Yi, et al., 2007a: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, L18805, doi: 10.1029/2007GL029938.

    Article  Google Scholar 

  • —, J. Ge, and F. Weng, 2007b: Detection of Asia dust storms using multisensor satellite measurements. Remote Sens. Environ., 110, 186–191.

    Article  Google Scholar 

  • —, P. Minnis, B. Chen, et al., 2008a: Long-range transport and vertical structure of Asian dust from CALIPSO and surface. J. Geophys. Res., 113, D23212, doi: 10.1029/2008JD010620.

    Article  Google Scholar 

  • —, W. Zhang, J. Zuo, et al., 2008b: An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv. Atmos. Sci., 25, 906–921, doi: 10.1007/s00376-008-0906-7.

    Article  Google Scholar 

  • —, Q. Fu, J. Su, et al., 2009: Taklamakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011–4021.

    Article  Google Scholar 

  • —, P. Minnis, H. Yan, et al., 2010: Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements. Atmos. Chem. Phys., 10, 6863–6872.

    Article  Google Scholar 

  • Hutchison K., B. Iisager, T. Kopp, et al., 2008: Distinguishing aerosols from clouds in global, multispectral satellite data with automated cloud classification algorithms. J. Atmos. Oceanic Technol., 25, 501–518.

    Article  Google Scholar 

  • Kaufman, Y., K. Arnon, and T. Didier, 2000: Detection of dust over the desert by EOS-MODIS. IEEE Trans. Geos. Remote Sens., 38, 525–531.

    Article  Google Scholar 

  • Legrand, M., J. J. Bertrand, and M. Desbois, 1985: Dust clouds over West Africa: A characterization by satellite data. Ann. Geophys., 3, 777–783.

    Google Scholar 

  • Li, C., S. C. Tsay, J. S. Fu, et al., 2010: Anthropogenic air pollution observed near dust source regions in northwestern China during springtime 2008. J. Geophys. Res., 115, D00K22, doi: 10.1029/2009JD013659.

    Google Scholar 

  • Liu, D., Z. Wang, Z. Y. Liu, et al., 2008: A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res., 113, D16214, doi: 10.1029/2007JD009776.

    Article  Google Scholar 

  • Liu, J., B. Chen, and J. Huang, 2014: Discrimination and validation of clouds and dust aerosol layers over the Sahara desert with combined CALIOP and IIR measurements. J. Meteor. Res., 28, 185–198, doi: 10.1007/s13351-014-3051-5.

    Article  Google Scholar 

  • Liu, Y., A. Omar, Y. Hu, et al., 2005: CALIOP algorithm theoretical basis document-Part 3: Scene classification algorithms. Release 1.0, PC-SCI-202, NASA Langley Research Center, Hampton, VA, 56.

    Google Scholar 

  • —, M. Vaughan, D. Winker, et al., 2009: The CALIPSO lidar cloud and aerosol discrimination: version 2 algorithm and initial assessment of performance. J. Atmos. Ocean. Technol., 26, 1198–1213.

    Article  Google Scholar 

  • —, J. Huang, G. Shi, et al., 2011: Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China. Atmos. Chem. Phys., 11, 11455–11463, doi: 10.5194/acp-11-11455-2011.

    Article  Google Scholar 

  • —, R. G. Liu, and X. Cheng, 2013: Dust detection over desert surfaces with thermal infrared bands using dynamic reference brightness temperature differences. J. Geophys. Res. Atmos., 118, 8566–8584, doi: 10.1002/jgrd.50647.

    Article  Google Scholar 

  • Liu, Y. Z., G. Y. Shi, and Y. K. Xie, 2013: Impact of dust aerosol on glacial-interglacial climate. Adv. Atmos. Sci., 30, 1725–1731, doi: 10.1007/s00376-013-2289-7.

    Article  Google Scholar 

  • Liu, Z. Y., M. A. Vaughan, D. M. Winker, et al., 2004: Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data. J. Geophys. Res., 109, D15202, doi: 10.1029/2004JD004732.

    Article  Google Scholar 

  • —, A. Omar, M. Vaughan, et al., 2008: CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. J. Geophys. Res., 113, D07207, doi: 10.1029/2007JD008878.

    Google Scholar 

  • Lu Naimeng and Wu Rongzhang, 2000: A convective rainfall estimate technique developed by NSMC of China. Acta Meteor. Sinica, 14, 225–232.

    Google Scholar 

  • —, Dong Chaohua, Yang Zhongdong, et al., 2012: Ground segment of the new general of Fengyun popoar orbit meteorological satellite (FY3) and its data application. Engineering Science, 14, 10–19. (in Chinese)

    Google Scholar 

  • Luo Jingning, Fan Yida, Shi Peijun, et al., 2003: Information-comparable method of monitoring the intensity of dust storm by multisource data of remote sensing. Journal of Natural Disasters, 12, 28–34. (in Chinese)

    Google Scholar 

  • Ma Jinghui, Zhang Hua, Zheng Youfei, et al., 2007: The optical depth global distribution of dust aerosol and its possible reason analysis. Climatic Environ. Res., 12, 156–164. (in Chinese)

    Google Scholar 

  • Ma, Y. Y., and W. Gong, 2012: Evaluating the performance of SVM in dust aerosol discrimination and testing its ability in an extended area. IEEE Selected Topics in Applied Earth Observations and Remote Sensing, 5, 1849–1858.

    Article  Google Scholar 

  • Mao Jietai, Zhang Junhua, and Wang Meihua, 2002: Summary comment on research of atmospheric aerosol in China. Acta Meteor. Sinica, 60, 625–634. (in Chinese)

    Google Scholar 

  • Miller, S. D., 2003: A consolidated technique for enhancing desert dust storms with MODIS. Geophys. Res. Lett., 30, 2071, doi: 10.1029/2003GL018279.

    Article  Google Scholar 

  • Myhre, G., D. Shindell, F.-M. Bréon, et al., 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F., D. Qin, G.-K. Plattner, et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 659–740 pp. doi: 10.1017/CBO9781107415324.018.

    Google Scholar 

  • Roskovensky, J. K., and K. N. Liou, 2003: Detection of thin cirrus from 1.38µm/0.65 µm reflectance ratio combined with 8.6–11 µm brightness temperature difference. Geophys. Res. Lett., 30, 1985, doi: 10.1029/2003GL018135.

    Article  Google Scholar 

  • —, and —, 2005: Differentiating airborne dust from cirrus clouds using MODIS data. Geophys. Res. Lett., 32, L12809, doi: 10.1029/2005GL022798.

    Article  Google Scholar 

  • Shao, Y., K. Wyrwoll, A. Chappell, et al., 2011: Dust cycle: An emerging core theme in earth system science. Aeolian Res., 2, 181–204.

    Article  Google Scholar 

  • Shenk, W. E., and R. J. Curran, 1974: The detection of dust storms over land and water with satellite visible and infrared measurements. Mon. Wea. Rev., 102, 830–837.

    Article  Google Scholar 

  • Shi Guangyu, Wang Biao, Zhang Hua, et al., 2008: The radiative and climatic effects of atmospheric aerosols. Chinese J. Atmos. Sci., 32, 826–840. (in Chinese)

    Google Scholar 

  • Su, J., J. Huang, Q. Fu, et al., 2008: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements. Atmos. Chem. Phys., 8, 2763–2771.

    Article  Google Scholar 

  • Tanre, D., and M. Legrand, 1991: On the satellite retrieval of Saharan dust optical thickness over land: Two different approaches. J. Geophys. Res., 96, 5221–5227.

    Article  Google Scholar 

  • Tao, H., Y. Li, H. Han, et al., 2005: Automatic detection of dust storm in Northwest China using decision tree classifier based on MODIS visible bands data. Proc. IGARSS 2005, Korea.

    Google Scholar 

  • Tegen, I., 2003: Modeling the mineral dust aerosol cycle in the climate system. Quart. Sci. Rev., 22, 1821–1834.

    Article  Google Scholar 

  • Vaughan, M. A., S. A. Young, D. M. Winker, et al., 2004: Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Proc. SPIE Int. Soc. Opt. Eng., 5575, 16–30.

    Google Scholar 

  • Wald, A., Y. Kaufman, D. Tanre, et al., 1998: Daytime and nighttime detection of mineral dust over desert using infrared spectral contrast. J. Geophys. Res., 103, 307–313.

    Article  Google Scholar 

  • Wang, H., G. Shi, W. Li., et al., 2006: The impacts of optical properties on radiative forcing due to dust aerosol. Adv. Atmos. Sci., 23, 431–441.

    Article  Google Scholar 

  • Wang Hong, Shi Guangyu, Wang Biao, et al., 2007: The impacts of dust aerosol from deserts of China on the radiative heating rate over desert sources and the North Pacific region. Chinese J. Atmos. Sci., 31, 515–526. (in Chinese)

    Google Scholar 

  • Wang, H., X. Y. Zhang, S. L. Gong, et al., 2010: Radiative feedback of dust aerosols on the East Asian dust storms. J. Geophys. Res., 115, D23214, doi: 10.1029/2009JD013430.

    Article  Google Scholar 

  • Wang, J., X. G. Xu, D. K. Henze, et al., 2012: Topdown estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model. Geophys. Res. Lett., 39, L08802, doi: 10.1029/2012GL051136.

    Google Scholar 

  • Wang, T., and J. Huang, 2009: A method for estimating optical properties of dusty cloud. Chin. Opt. Lett., 7, 368–372.

    Article  Google Scholar 

  • Wang, W. C., J. P. Huang, P. Minnis, et al., 2010: Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A-Train data during the Pacific Dust Experiment. J. Geophys. Res., 115, D00H35, doi: 10.1029/2010JD014109.

    Google Scholar 

  • Wang, X., J. P. Huang, M. X. Ji, et al., 2008: Variability of East Asian dust events and their long-term trend. Atmos. Environ., 42, 3156–3165, doi: 10.1016/j.atmosenv.2007.07.046.

    Article  Google Scholar 

  • —, —, R. D. Zhang, et al., 2010: Surface measurements of aerosol properties over Northwest China during ARM China 2008 deployment. J. Geophys. Res. Atmos., 115, doi: 10.1029/2009jd013467.

  • Winker, D. M., W. H. Hunt, and C. A. Hostetler, 2004: Status and performance of the CALIOP lidar. Proc. SPIE Int. Soc. Opt. Eng., 5575, 8–15.

    Google Scholar 

  • —, J. Pelon, and M. McCormick, 2006: Initial results from CALIPSO. 23rd International Laser Radar Conference, Nara, Japan.

    Google Scholar 

  • Yan Hao, Jiao Meiyan, Wang Jianlin, et al., 2005: Dust detection using thermal infrared channel. J. Appl. Meteor. Sci., 16, 238–241. (in Chinese)

    Google Scholar 

  • Yin, Y., S. Wurzler, Z. Levin, et al., 2002: Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. J. Geophys. Res., 107, 4724, doi: 10.1029/2001JD001544.

    Article  Google Scholar 

  • —, and L. Chen, 2007: The effects of heating by transported dust layers on cloud and precipitation: A numerical study. Atmos. Chem. Phys., 7, 3497–3505.

    Article  Google Scholar 

  • Yin Yan, Cui Zhenlei, Zhang Hua, et al., 2009: Numerical simulations of mass distribution of aerosols over China in 2006. Trans. Atmos. Sci., 32, 595–603. (in Chinese)

    Google Scholar 

  • Zender, C. S., R. L. R. L. Miller, and I. Tegen, 2004: Quantifying mineral dust mass budgets: Terminology, constraints, and current estimates. Eos Transactions American Geophysical Union, 85, 509–512.

    Article  Google Scholar 

  • Zhang Hua, Shi Guangyu, and Liu Yi, 2007: The effects of line-wing cutoff on radiative calculations. Acta Meteor. Sinica, 65, 968–975. (in Chinese)

    Google Scholar 

  • —, Ma Jinghui, and Zheng Youfei, 2009: A modeling study of global radiative forcing due to dust aerosol. Acta Meteor. Sinica, 67, 510–521. (in Chinese)

    Google Scholar 

  • Zhang, J. L., and S. A. Christopher, 2003: Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra. Geophys. Res. Lett., 30, 2188, doi: 10.1029/2003GL018479.

    Article  Google Scholar 

  • —, —, L. A. Remer, et al., 2005a: Shortwave aerosol radiative forcing over cloud-free oceans from Terra. I: Angular models for aerosols. J. Geophys. Res. Atmos., 110, D10S23, doi: 10.1029/2004JD005008.

    Google Scholar 

  • —, S. Christopher, L. Remer, et al., 2005b: Shortwave aerosol cloud-free radiative forcing from Terra. II: Global and seasonal distributions. J. Geophys. Res. Atmos., 110, D10S24, doi: 10.1029/2004JD005009.

    Google Scholar 

  • —, J. R. Campbell, J. S. Reid, et al., 2011: Evaluating the impact of assimilating CALIOP-derived aerosol extinction profiles on a global mass transport model. Geophys. Res. Lett., 38, L14801, doi: 10.1029/2011GL047737.

    Google Scholar 

  • Zhang, L., X. Cao, J. Bao, et al., 2010: A case study of dust aerosol radiative properties over Lanzhou, China. Atmos. Chem. Phys., 10, 4283–4293.

    Article  Google Scholar 

  • Zhang, P., N. Lu, X. Hu, et al., 2006: Identification and physical retrieval of dust storm using three MODIS thermal IR channels. Global Planet. Change, 52, 197–206.

    Article  Google Scholar 

  • Zhang Peng, Zhang Xingying, Hu Xiuqing, et al., 2007: Satellite remote sensing and analysis of a dust event in 2006. Climatic Environ. Res., 12, 302–308. (in Chinese)

    Google Scholar 

  • Zhang, X. Y., 2007: Aerosol over China and their climate effect. Adv. Earth Sci., 22, 12–16. (in Chinese)

    Google Scholar 

  • —, R. Arimoto, and Z. S. As, 1997: Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res., 102, 28041–28047.

    Article  Google Scholar 

  • —, S. L. Gong, Z. X. Shen, et al., 2003a: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia.1: Network observations. J. Geophys. Res., 108(D9), 4261, doi: 10.1029/2002JD002632.

    Article  Google Scholar 

  • —, —, T. L. Zhao, et al., 2003b: Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett., 30, 2272, doi: 10.1029/2003GL018206.

    Article  Google Scholar 

  • Zhao, C., S. Chen, L. Leung, et al., 2013: Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmos. Chem. Phys., 13, 10733–10753.

    Article  Google Scholar 

  • Zhao, X. P., 2012: Asian dust detection from the satellite observations of moderate resolution imaging spectroradiometer (MODIS). Aerosol Air Qual. Res., 12, 1073–1080.

    Google Scholar 

  • Zhou, T., J. Huang, Z. Huang, et al., 2013: The depolarization-attenuated backscatter relationship for dust plumes. Opt. Express, 21, 15195–15204. doi: 10.1364/OE.21.015195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen  (陈 斌).

Additional information

Supported by the National Basic Research and Development (973) Program of China (2012CB955301), National Natural Science Foundation of China (41305026, 41075021, 41305027), and Fundamental Research Fund for the Central Universities of China (LZUJBKY-2013-104).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Zhang, P., Zhang, B. et al. An overview of passive and active dust detection methods using satellite measurements. J Meteorol Res 28, 1029–1040 (2014). https://doi.org/10.1007/s13351-014-4032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-4032-4

Key words

Navigation