Skip to main content
Log in

Response of atmospheric energy to historical climate change in CMIP5

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Three forms of atmospheric energy, i.e., internal, potential, and latent, are analyzed based on the historical simulations of 32 Coupled Model Intercomparison Project Phase 5 (CMIP5) models and two reanalysis datasets (NCEP/NCAR and ERA-40). The spatial pattern of climatological mean atmospheric energy is well reproduced by all CMIP5 models. The variation of globally averaged atmospheric energy is similar to that of surface air temperature (SAT) for most models. The atmospheric energy from both simulation and reanalysis decreases following the volcanic eruption in low-latitude zones. Generally, the climatological mean of simulated atmospheric energy from most models is close to that obtained from NCEP/NCAR, while the simulated atmospheric energy trend is close to that obtained from ERA-40. Under a certain variation of SAT, the simulated global latent energy has the largest increase ratio, and the increase ratio of potential energy is the smallest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alessandri, A., P. G. Fogli, M. Vichi, et al., 2012: Strengthening of the hydrological cycle in future scenarios: Atmospheric energy and water balance perspective. Earth System Dynamics, 3, 199–212, doi: 10.5194/esd-3-199-2012.

    Article  Google Scholar 

  • Allen, M. R., P. A. Stott, J. F. B. Mitchell, et al., 2000: Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 407, 617–620, doi: 10.1038/35036559.

    Article  Google Scholar 

  • Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting. Part I: Theory. Climate Dyn., 21, 477–491, doi: 10.1007/s00382-003-0313-9.

    Article  Google Scholar 

  • Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 1071–1092, doi: 10.1175/Jcli4035.1.

    Article  Google Scholar 

  • Baettig, M. B., M. Wild, and D. M. Imboden, 2007: A climate change index: Where climate change may be most prominent in the 21st century. Geophys. Res. Lett., 34, doi: 10.1029/2006GL028159.

  • Baldwin, M. P., M. Dameris, and T. G. Shepherd, 2007: Atmosphere-How will the stratosphere affect climate change? Science, 316, 1576–1577, doi: 10.1126/science.1144303.

    Article  Google Scholar 

  • Barnett, T. P., K. Hasselmann, M. Chelliah, et al., 1999: Detection and attribution of recent climate change: A status report. Bull. Amer. Meteor. Soc., 80, 2631–2659, doi: 10.1175/1520-0477(1999)080〈2631:Daaorc〉2.0.Co;2.

    Article  Google Scholar 

  • Barnett, T. P., D.W. Pierce, and R. Schnur, 2001: Detection of anthropogenic climate change in the world’s oceans. Science, 292, 270–274, doi: 10.1126/science.1058304.

    Article  Google Scholar 

  • Bodri, L., and V. Cermak, 2005: Borehole temperatures, climate change and the pre-observational surface air temperature mean: Allowance for hydraulic conditions. Global Planet. Change, 45, 265–276, doi: 10.1016/j.gloplacha.2004.09.001.

    Article  Google Scholar 

  • Bony, S., R. Colman, V. M. Kattsov, et al., 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 3445–3482, doi: 10.1175/Jcli3819.1.

    Article  Google Scholar 

  • Chamberlin, T. C., 1897: A group of hypothesis hearing on climatic change. J. Geol., 5, 653–683, doi: 10.1086/607921.

    Article  Google Scholar 

  • Chang, E. K. M., Y. J. Guo, X. M. Xia, et al., 2013: Storm-track activity in IPCC AR4/CMIP3 model simulations. J. Climate, 26, 246–260, doi: 10.1175/Jcli-D-11-00707.1.

    Article  Google Scholar 

  • Church, J. A., and N. J. White, 2006: A 20th century acceleration in global sea-level rise. Geophys. Res. Lett., 33, doi: 10.1029/2005gl024826.

  • Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, et al., 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28, doi: 10.1002/Qj.776.

    Article  Google Scholar 

  • Dixon, K. W., and J. R. Lanzante, 1999: Global mean surface air temperature and North Atlantic overturning in a suite of coupled GCM climate change experiments. Geophys. Res. Lett., 26, 1885–1888, doi: 10.1029/1999gl900382.

    Article  Google Scholar 

  • Fleming, J. R., 2005: Historical Perspectives on Climate Change. Oxford University Press, 208 pp.

    Google Scholar 

  • Hansen, J., L. Nazarenko, R. Ruedy, et al., 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431–1435, doi: 10.1126/science.1110252.

    Article  Google Scholar 

  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energ. Env., 25, 441–475, doi: 10.1146/annurev.energy.25.1.441.

    Article  Google Scholar 

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, doi: 10.1175/Jcli3990.1.

    Article  Google Scholar 

  • Henderson-Sellers, A., R. E. Dickinson, T. B. Durbidge, et al., 1993: Tropical deforestation-modeling localscale to regional-scale climate change. J. Geophys. Res., 98, 7289–7315, doi: 10.1029/92jd 02830.

    Article  Google Scholar 

  • Ingram, W. J., C. A. Wilson, and J. F. B. Mitchell, 1989: Modeling climate change-An assessment of sea ice and surface albedo feedbacks. J. Geophys. Res., 94, 8609–8622, doi: 10.1029/Jd 094id06p08609.

    Article  Google Scholar 

  • Johannessen, O. M., L. Bengtsson, M. W. Miles, et al., 2004: Arctic climate change: Observed and modelled temperature and sea-ice variability. Tellus A, 56, 328–341, doi: 10.1111/j.1600-0870.2004.00060.x.

    Article  Google Scholar 

  • Jones, P. D., M. New, D. E. Parker, et al., 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37, 173–199, doi: 10.1029/1999rg900002.

    Article  Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477 (1996)077〈0437:Tnyrp〉2.0.Co;2.

    Article  Google Scholar 

  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197–208, doi: 10.1175/1520-0477 (1997)078〈0197:Eagmeb〉2.0.Co;2.

    Article  Google Scholar 

  • Levitus, S., 2000: Warming of the world ocean. Science, 287, 2225–2229, doi: 10.1126/science.287.5461.2225.

    Article  Google Scholar 

  • Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, doi: 10.1029/2004gl021592.

  • Li, Z. Q., and H. G. Leighton, 1993: Global climatologies of solar-radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. J. Geophys. Res., 98, 4919–4930, doi: 10.1029/93jd00003.

    Article  Google Scholar 

  • Lucarini, V., and F. Ragone, 2011: Energetics of climate models: Net energy balance and meridional enthalpy transport. Rev. Geophys., 49, doi: 10.1029/2009rg000323.

  • Mayer, M., and L. Haimberger, 2012: Poleward atmospheric energy transports and their variability as evaluated from ECMWF reanalysis data. J. Climate, 25, 734–752, doi: 10.1175/Jcli-D-11-00202.1.

    Article  Google Scholar 

  • Meehl, G. A., W. M. Washington, W. D. Collins, et al., 2005: How much more global warming and sea level rise? Science, 307, 1769–1772, doi: 10.1126/science.1106663.

    Article  Google Scholar 

  • Meehl, G. A., C. Covey, K. E. Taylor, et al., 2007: THE WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394, doi: 10.1175/bams-88-9-1383.

    Article  Google Scholar 

  • Nobre, C. A., P. J. Sellers, and J. Shukla, 1991: Amazonian deforestation and regional climate change. J. Climate, 4, 957–988, doi: 10.1175/1520-0442 (1991)004〈0957:Adarcc〉2.0.Co;2.

    Article  Google Scholar 

  • Oreskes, N., 2004: Beyond the ivory tower-The scientific consensus on climate change. Science, 306, 1686, doi: 10.1126/science.1103618.

    Article  Google Scholar 

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

    Google Scholar 

  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191–219, doi: 10.1029/1998rg000054.

    Article  Google Scholar 

  • Santer, B. D., K. E. Taylor, T. M. L. Wigley, et al., 1996: A search for human influences on the thermal structure of the atmosphere. Nature, 382, 39–46, doi: 10.1038/382039a0.

    Article  Google Scholar 

  • Santer, B. D., T. M. L. Wigley, C. Mears, et al., 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309, 1551–1556, doi: 10.1126/science.1114867.

    Article  Google Scholar 

  • Sato, M., J. Hansen, P. Mccormick, et al., 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22987–22994, doi: 10.1029/93jd02553.

    Article  Google Scholar 

  • Simmons, A. J., P. D. Jones, V. da Costa Bechtold, et al., 2004: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109, doi: 10.1029/2004jd005306.

  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled oceanatmosphere models. J. Climate, 19, 3354–3360, doi: 10.1175/Jcli3799.1.

    Article  Google Scholar 

  • Stott, P. A., G. S. Jones, and J. F. B. Mitchell, 2003: Do models underestimate the solar contribution to recent climate change? J. Climate, 16, 4079–4093, doi: 10.1175/1520-0442(2003)016〈4079:Dmutsc〉2.0.Co;2.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/Bams-D-11-00094.1.

    Article  Google Scholar 

  • Trenberth, K. E., and L. Smith, 2005: The mass of the atmosphere: A constraint on global analyses. J. Climate, 18, 864–875, doi: 10.1175/Jcli-3299.1.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741–758, doi: 10.1007/s00382-005-0017-4.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, and J. T. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311–323, doi: 10.1175/2008bams2634.1.

    Article  Google Scholar 

  • Uppala, S. M., P. W. KÅllberg, A. J. Simmons, et al., 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi: 10.1256/Qj.04.176.

    Article  Google Scholar 

  • Watterson, I. G., M. R. Dix, and R. A. Colman, 1999: A comparison of present and doubled CO2 climates and feedbacks simulated by three general circulation models. J. Geophys. Res., 104, 1943–1956, doi: 10.1029/1998jd200049.

    Article  Google Scholar 

  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, et al., 1996: Clouds and the earth’s radiant energy system (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853–868.

    Article  Google Scholar 

  • Willmott, C. J., and D. R. Legates, 1993: A comparison of GCM-simulated and observed mean January and July surface air temperature. J. Climate, 6, 274–291, doi: 10.1175/1520-0442(1993)006〈0274:Acogsa〉2.0.Co;2.

    Article  Google Scholar 

  • Zhang, X., F. W. Zwiers, G. C. Hegerl, et al., 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461–465, doi: 10.1038/nature06025.

    Article  Google Scholar 

  • Zhou, T. J., and R. C. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 5843–5858, doi: 10.1175/Jcli3952.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Gao  (高艳红).

Additional information

Supported by the National Basic Research and Development (973) Program of China (2010CB950503), “100-Talent” Program of the Chinese Academy of Sciences to Dr. Gao, West Light Foundation of the Chinese Academy of Sciences to Dr. Han, and National Natural Science Foundation of China (41205005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Lü, S., Gao, Y. et al. Response of atmospheric energy to historical climate change in CMIP5. J Meteorol Res 29, 93–105 (2015). https://doi.org/10.1007/s13351-014-4016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-4016-4

Key words

Navigation