Skip to main content
Log in

An overview of the studies on black carbon and mineral dust deposition in snow and ice cores in East Asia

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Black carbon (BC) is the most effective insoluble light-absorbing particulate (ILAP), which can strongly absorb solar radiation at visible wavelengths. Once BC is deposited in snow via dry or wet process, even a small amount of BC could significantly decrease snow albedo, enhance absorption of solar radiation, accelerate snow melting, and cause climate feedback. BC is considered the second most important component next to CO2 in terms of global warming. Similarly, mineral dust (MD) is another type of ILAP. So far, little attention has been paid to quantitative measurements of BC and MD deposition on snow surface in the midlatitudes of East Asia, especially over northern China. In this paper, we focus on reviewing several experiments performed for collecting and measuring scavenging BC and MD in the high Asian glaciers over the mount’ range (such as the Himalayas) and in seasonal snow over northern China. Results from the surveyed literature indicate that the absorption of ILAP in seasonal snow is dominated by MD in the Qilian Mount’s and by local soil dust in the Inner Mongolian region close to dust sources. The detection of BC in snow and ice cores using modern techniques has a large bias and uncert’ty when the snow sample is mixed with MD. Evidence also indicates that the reduction of snow albedo by BC and MD perturbations can significantly increase the net surface solar radiation, cause surface air temperature to rise, reduce snow accumulation, and accelerate snow melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfaro, S. C., S. Lafon, J. L. Rajot, et al., 2004: Iron oxides and light absorption by pure desert dust: An experimental study. J. Geophys. Res., 109(D8), doi: 10.1029/2003jd004374.

    Google Scholar 

  • Aoki, T., K. Kuchiki, M. Niwano, et al., 2011: Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. J. Geophys. Res., 116(D11), doi: 10.1029/2010jd015507.

    Google Scholar 

  • Baumgardner, D., G. Kok, and G. Raga, 2004: Warming of the Arctic lower stratosphere by light absorbing particles. Geophys. Res. Lett., 31, doi: 10.1029/2003gl018883.

  • Bi, J. R., J. P. Huang, Q. A. Fu, et al., 2011: Toward characterization of the aerosol optical properties over Loess Plateau of northwestern China. J. Quant. Spectrosc. Ra., 112, 346–360, doi: 10.1016/J.Jqsrt.2010.09.006.

    Google Scholar 

  • Bond, T. C., M. Bussemer, B. Wehner, et al., 1999: Light absorption by primary particle emissions from a lignite burning plant. Environ. Sci. Technol., 33, 3887–3891, doi: 10.1021/Es9810538.

    Google Scholar 

  • —, D. G. Streets, K. F. Yarber, et al., 2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109(D14), doi: 10.1029/2003jd003697.

    Google Scholar 

  • —, and R. W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol., 40, 27–67, doi: 10.1080/02786820500421521.

    Google Scholar 

  • —, E. Bhardwaj, R. Dong, et al., 2007: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem. CY., 21, doi: 10.1029/2006gb002840.

  • —, S. J. Doherty, D. W. Fahey, et al., 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res., 118, 5380–5552, doi: 10.1002/jgrd.50171.

    Google Scholar 

  • Cachier, H., M. P. Bremond, and P. Buat-Ménard, 1989: Determination of atmospheric soot carbon with a simple thermal method. Tellus B, 41, 379–390.

    Google Scholar 

  • —, and M. H. Pertuisot, 1994: Particulate carbon in Arctic ice. Analusis, 22, M34–M37.

    Google Scholar 

  • Cao, J. J., S. C. Lee, J. C. Chow, et al., 2007: Spatial and seasonal distributions of carbonaceous aerosols over China. J. Geophys. Res., 112(D22), doi: 10.1029/2006jd008205.

    Google Scholar 

  • Charlson, R. J., S. E. Schwartz, J. M. Hales, et al., 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430, doi: 10.1126/science.255.5043.423.

    Google Scholar 

  • Che, H. Z., X. Y. Zhang, S. Alfraro, et al., 2009: Aerosol optical properties and its radiative forcing over Yulin, China in 2001 and 2002. Adv. Atmos. Sci., 26, 564–576, doi: 10.1007/S00376-009-0564-4.

    Google Scholar 

  • —, Y. Q. Wang, J. Y. Sun, et al., 2013: Variation of aerosol optical properties over the Taklimakan desert in China. Aerosol Air Qual. Res., 13, 777–785, doi: 10.4209/Aaqr.2012.07.0200.

    Google Scholar 

  • Chen, S. Y., J. P. Huang, C. Zhao, et al., 2013: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res., 118, 797–812, doi: 10.1002/Jgrd.50122.

    Google Scholar 

  • Chen, Y., and T. C. Bond, 2010: Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys., 10, 1773–1787.

    Google Scholar 

  • Chýlek, P., V. Ramaswamy, and V. Srivastava, 1983: Albedo of soot-contaminated snow. J. Geophys. Res., 88, 10837–10843, doi: 10.1029/Jc088ic15p10837.

    Google Scholar 

  • —, V. Srivastava, L. Cahenzli, et al., 1987: Aerosol and graphitic carbon content of snow. J. Geophys. Res., 92(D8), 9801–9809, doi: 10.1029/Jd092id08p09801.

    Google Scholar 

  • Claquin, T., C. Roelandt, K. Kohfeld, et al., 2003: Radiative forcing of climate by ice-age atmospheric dust. Climate Dyn., 20, 193–202.

    Google Scholar 

  • Clarke, A. D., 1982: Integrating sandwich: A new method of measurement of the light-absorption coefficient for atmospheric particles. Appl. Opt., 21, 3011–3020.

    Google Scholar 

  • —, and K. J. Noone, 1985: Soot in the Arctic snowpack: A cause for perturbations in radiative transfer. Atmos. Environ., 19, 2045–2053, doi: 10.1016/0004-6981(85)90113-1.

    Google Scholar 

  • —, K. J. Noone, J. Heintzenberg, et al., 1987: Aerosol light absorption measurement techniques: Analysis and intercomparisons. Atmos. Environ., 21, 1455–1465.

    Google Scholar 

  • —, Y. Shinozuka, V. N. Kapustin, et al., 2004: Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties. J. Geophys. Res., 109(D15), doi: 10.1029/2003jd004378.

    Google Scholar 

  • Conway, H., A. Gades, and C. F. Raymond, 1996: Albedo of dirty snow during conditions of melt. Water Resour. Res., 32, 1713–1718, doi: 10.1029/96wr00712.

    Google Scholar 

  • Covert, D. S., and J. Heintzenberg, 1993: Size distributions and chemical properties of aerosol at Ny Ålesund, Svalbard. Atmos. Environ., 27, 2989–2997, doi: 10.1016/0960-1686(93)90331-R.

    Google Scholar 

  • Derimian, Y., A. Karnieli, Y. J. Kaufman, et al., 2008: The role of iron and black carbon in aerosol light absorption. Atmos. Chem. Phys., 8, 3623–3637.

    Google Scholar 

  • Ding, Y. J., S. Y. Liu, J. Li, et al., 2006: The retreat of glaciers in response to recent climate warming in western China. Ann. Glaciol., 43, 97–105, doi: 10.3189/172756406781812005.

    Google Scholar 

  • Doherty, S. J., S. G. Warren, T. C. Grenfell, et al., 2010: Light-absorbing impurities in Arctic snow. Atmos. Chem. Phys., 10, 11647–11680, doi: 10.5194/acp-10-11647-2010.

    Google Scholar 

  • —, T. C. Grenfell, S. Forsström, et al., 2013: Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J. Geophys. Res., 118, 5553–5569, doi: 10.1002/Jgrd.50235.

    Google Scholar 

  • Dou, T., C. Xiao, D. T. Shindell, et al., 2012: The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model. Atmos. Chem. Phys., 12, 7995–8007, doi: 10.5194/Acp-12-7995-2012.

    Google Scholar 

  • Dusek, U., G. Frank, L. Hildebrandt, et al., 2006: Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312, 1375–1378.

    Google Scholar 

  • Fialho, P., M. C. Freitas, F. Barata, et al., 2006: The Aethalometer calibration and determination of iron concentration in dust aerosols. J. Aerosol Sci., 37, 1497–1506, doi: 10.1016/j.jaerosci.2006.03.002.

    Google Scholar 

  • Fischer, K., 1970: Measurements of absorption of visible radiation by aerosol particles. Contrib. Atmos. Phys., 43, 244–254.

    Google Scholar 

  • Flanner, M. G., 2013: Arctic climate sensitivity to local black carbon. J. Geophys. Res., 118, 1840–1851, doi: 10.1002/Jgrd.50176.

    Google Scholar 

  • —, and C. S. Zender, 2005: Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophys. Res. Lett., 32, doi: 10.1029/2004gl022076.

  • —, C. S. Zender, J. T. Randerson, et al., 2007: Presentday climate forcing and response from black carbon in snow. J. Geophys. Res., 112(D11), doi: 10.1029/2006jd008003.

    Google Scholar 

  • —, C. S. Zender, P. G. Hess, et al., 2009: Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9, 2481–2497.

    Google Scholar 

  • Forster, P., V. Ramaswamy, P. Artaxo, et al., 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 129–234.

    Google Scholar 

  • Grenfell, T. C., S. G. Warren, and P. C. Mullen, 1994: Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res., 99(D9), 18669–18684, doi: 10.1029/94jd01484.

    Google Scholar 

  • —, B. Light, and M. Sturm, 2002: Spatial distribution and radiative effects of soot in the snow and sea ice during the SHEBA experiment. J. Geophys. Res., 107(C10), doi: 10.1029/2000jc000414.

    Google Scholar 

  • —, S. J. Doherty, A. D. Clarke, et al., 2011: Light absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters. Appl. Opt., 50, 2037–2048.

    Google Scholar 

  • Hadley, O. L., C. E. Corrigan, T. W. Kirchstetter, et al., 2010: Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat. Atmos. Chem. Phys., 10, 7505–7513, doi: 10.5194/acp-10-7505-2010.

    Google Scholar 

  • —, and T. W. Kirchstetter, 2012: Black-carbon reduction of snow albedo. Nat. Climate Change, 2, 437–440, doi: 10.1038/Nclimate1433.

    Google Scholar 

  • Hagler, G. S. W., M. H. Bergin, E. A. Smith, et al., 2007a: A summer time series of particulate carbon in the air and snow at Summit, Greenland. J. Geophys. Res., 112(D21), doi: 10.1029/2007jd008993.

    Google Scholar 

  • —, —, —, et al., 2007b: Particulate and watersoluble carbon measured in recent snow at Summit, Greenland. Geophys. Res. Lett., 34, doi: 10.1029/2007gl030110.

  • Han, D. C., X. K. Zhang, V. V. S. Tomar, et al., 2009: Effects of heavy metal pollution of highway origin on soil nematode guilds in North Shenyang, China. J. Environ. Sci., 21, 193–198.

    Google Scholar 

  • Hansen, J., M. Sato, R. Ruedy, et al., 2000: Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci., 97, 9875–9880, doi: 10.1073/pnas.170278997.

    Google Scholar 

  • —, and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci., 101, 423–428, doi: 10.1073/pnas. 2237157100.

    Google Scholar 

  • —, M. Sato, R. Ruedy, et al., 2005: Efficacy of climate forcings. J. Geophys. Res., 110(D18), doi: 10.1029/2005jd005776.

    Google Scholar 

  • Hansen, J. E., A. A. Lacis, P. Lee, et al., 1980: Climatic effects of atmospheric aerosols. Ann. N. Y. Acad. Sci., 338, 575–587.

    Google Scholar 

  • Hansen, K., 1984: Chimney soot in the cell transformation assay. Mutat. Res., 130, 261, doi: 10.1016/0165-1161(84)90308-X.

    Google Scholar 

  • Harrison, S. P., K. E. Kohfeld, C. Roelandt, et al., 2001: The role of dust in climate changes today, at the last glacial maximum and in the future. Earth Sci. Rev., 54, 43–80, doi: 10.1016/S0012-8252(01)00041-1.

    Google Scholar 

  • Harvey, L. D. D., 1988: Climatic impact of ice-age aerosols. Nature, 334, 333–335, doi: 10.1038/334333a0.

    Google Scholar 

  • Hegg, D. A., S. G. Warren, T. C. Grenfell, et al., 2009: Source attribution of black carbon in arctic snow. Environ. Sci. Technol., 43, 4016–4021, doi: 10.1021/Es803623f.

    Google Scholar 

  • —, —, —, et al., 2010: Sources of light-absorbing aerosol in arctic snow and their seasonal variation. Atmos. Chem. Phys., 10, 10923–10938, doi: 10.5194/acp-10-10923-2010.

    Google Scholar 

  • Heintzenberg, J., 1982: Size-segregated measurements of particulate elemental carbon and aerosol light absorption at remote Arctic locations. Atmos. Environ., 16, 2461–2469, doi: 10.1016/0004-6981 (82)90136-6.

    Google Scholar 

  • Hendricks, J., B. Kaärcher, A. Döpelheuer, et al., 2004: Simulating the global atmospheric black carbon cycle: a revisit to the contribution of aircraft emissions. Atmos. Chem. Phys., 4, 2521–2541.

    Google Scholar 

  • Holland, M. M., D. A. Bailey, B. P. Briegleb, et al., 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Climate, 25, 1413–1430, doi: 10.1175/Jcli-D-11-00078.1.

    Google Scholar 

  • Horvath, H., 1993: Comparison of measurements of aerosol optical-absorption by filter collection and a transmissometric method. Atmos. Environ., 27, 319–325, doi: 10.1016/0960-1686 (93)90105-8.

    Google Scholar 

  • —, 1995: Size segregated light-absorption coefficient of the atmospheric aerosol. Atmos. Environ., 29, 875–883, doi: 10.1016/1352-2310 (95)00025-T.

    Google Scholar 

  • —, 1997: Experimental calibration for aerosol light absorption measurements using the integrating plate method-Summary of the data. J. Aerosol Sci., 28, 1149–1161, doi: 10.1016/S0021-8502(97)00007-4.

    Google Scholar 

  • Huang, J. P., B. Lin, P. Minnis, et al., 2006: Satellitebased assessment of possible dust aerosols semidirect effect on cloud water path over East Asia. Geophys. Res. Lett., 33, doi: 10.1029/2006gl026561.

  • —, P. Minnis, Y. H. Yi, et al., 2007: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, doi: 10.1029/2007gl029938.

  • —, P. Minnis, B. Chen, et al., 2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113(D23), doi: 10.1029/2008jd010620.

    Google Scholar 

  • —, Q. Fu, W. Zhang, et al., 2011: Dust and black carbon in seasonal snow across northern China. Bull. Amer. Meteor. Soc., 92, 175–181, doi: 10.1175/2010bams3064.1.

    Google Scholar 

  • Huang, Z. W., J. P. Huang, J. R. Bi, et al., 2010: Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. Joint Dust Field Experiment. J. Geophys. Res., 115(D7), doi: 10.1029/2009jd013273.

    Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds, Cambridge University Press, 1535 pp.

    Google Scholar 

  • Jacobson, M. Z., 2001a: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res., 106(D2), 1551–1568, doi: 10.1029/2000jd900514.

    Google Scholar 

  • —, 2001b: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697, doi: 10.1038/35055518.

    Google Scholar 

  • —, 2004a: Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J. Geophys. Res., 109(D21), doi: 10.1029/2004jd004945.

    Google Scholar 

  • —, 2004b: The short-term cooling but long-term global warming due to biomass burning. J. Climate, 17, 2909–2926.

    Google Scholar 

  • Jenk, T. M., S. Szidat, M. Schwikowski, et al., 2006: Radiocarbon analysis in an Alpine ice core: Record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650-1940). Atmos. Chem. Phys., 6, 5381–5390.

    Google Scholar 

  • Koch, D., and J. Hansen, 2005: Distant origins of Arctic black carbon: A Goddard Institute for Space Studies model experiment. J. Geophys. Res., 110(D4), doi: 10.1029/2004jd005296.

    Google Scholar 

  • —, S. Menon, A. Del Genio, et al., 2009: Distinguishing aerosol impacts on climate over the past century. J. Climate, 22, 2659–2677, doi: 10.1175/2008jcli2573.1.

    Google Scholar 

  • Kondo Y., L. Sahu, N. Moteki, et al., 2011: Consistency and traceability of black carbon measurements made by laser-induced incandescence, thermal-optical transmittance, and filter-based photo-absorption techniques. Aerosol Sci. Technol., 45, 295–312, doi: 10.1080/02786826.2010.533215.

    Google Scholar 

  • Kopacz, M., D. L. Mauzerall, J. Wang, et al., 2011: Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmos. Chem. Phys., 11, 2837–2852, doi: 10.5194/Acp-11-2837-2011.

    Google Scholar 

  • Krinner, G., O. Boucher, and Y. Balkanski, 2006: Ice-free glacial northern Asia due to dust deposition on snow. Climate Dyn., 27, 613–625, doi: 10.1007/s00382-006-0159-z.

    Google Scholar 

  • Lavanchy, V. M. H., H. W. Gäggeler, S. Nyeki, et al., 1999: Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmos. Environ., 33, 2759–2769, doi: 10.1016/S1352-2310 (98)00328-8.

    Google Scholar 

  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, et al., 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 2240–2260, doi: 10.1175/Jcli-D-11-00103.1.

    Google Scholar 

  • Liao, H., and J. H. Seinfeld, 1998: Radiative forcing by mineral dust aerosols: Sensitivity to key variables. J. Geophys. Res., 103(D24), 31637–31645.

    Google Scholar 

  • Lin, C. I., M. Baker, and R. J. Charlson, 1973: Absorption coefficient of atmospheric aerosol: A method for measurement. Appl. Opt., 12, 1356–1363.

    Google Scholar 

  • Liu, S. Y., D. H. Shangguan, Y. J. Ding, et al., 2006: Glacier changes during the past century in the Gangrigabu mount’s, southeast Qinghai-Xizang (Tibetan) Plateau, China. Ann. Glaciol., 43, 187–193, doi: 10.3189/172756406781812348.

    Google Scholar 

  • —, Y. Zhang, Y. S. Zhang, et al., 2009: Estimation of glacier runoff and future trends in the Yangtze River source region, China. J. Glaciol., 55, 353–362.

    Google Scholar 

  • Liu, X. D., and B. D. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 1729–1742.

    Google Scholar 

  • Liu, Y., J. Huang, G. Shi, et al., 2011: Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China. Atmos. Chem. Phys., 11, 11455–11463, doi: 10.5194/Acp-11-11455-2011.

    Google Scholar 

  • Liu, Y. Z., G. Y. Shi, and Y. K. Xie, 2013: Impact of dust aerosol on glacial-interglacial climate. Adv. Atmos. Sci., 30, 1725–1731, doi: 10.1007/s00376-013-2289-7.

    Google Scholar 

  • McConnell, J. R., R. Edwards, G. L. Kok, et al., 2007: 20th-century industrial black carbon emissions altered arctic climate forcing. Science, 317, 1381–1384, doi: 10.1126/science.1144856.

    Google Scholar 

  • —, and —, 2008: Coal burning leaves toxic heavy metal legacy in the Arctic. Proc. Natl. Acad. Sci., 105, 12140–12144, doi: 10.1073/Pnas.0803564105.

    Google Scholar 

  • Menon, S., D. Koch, G. Beig, et al., 2010: Black carbon aerosols and the third polar ice cap. Atmos. Chem. Phys., 10, 4559–4571, doi: 10.5194/acp-10-4559-2010.

    Google Scholar 

  • Ming, J., H. Cachier, C. Xiao, et al., 2008: Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos. Chem. Phys., 8, 1343–1352.

    Google Scholar 

  • —, C. D. Xiao, H. Cachier, et al., 2009: Black Carbon (BC) in the snow of glaciers in West China and its potential effects on albedos. Atmos. Res., 92, 114–123, doi: 10.1016/j.atmosres.2008.09.007.

    Google Scholar 

  • —, Z. C. Du, C. D. Xiao, et al., 2012: Darkening of the mid-Himalaya glaciers since 2000 and the potential causes. Environ. Res. Lett., 7, 14021–14033, doi: 10.1088/1748-9326/7/1/014021.

    Google Scholar 

  • —, P. L. Wang, S. Y. Zhao, et al., 2013a: Disturbance of light-absorbing aerosols on the albedo in a winter snowpack of central Tibet. J. Environ. Sci., 25, 1601–1607, doi: 10.1016/S1001-0742 (12)60220-4.

    Google Scholar 

  • —, C. D. Xiao, Z. C. Du, et al., 2013b: An overview of black carbon deposition in high Asian glaciers and its impacts on radiation balance. Adv. Water Res., 55, 80–87, doi: 10.1016/j.advwatres.2012.05.015.

    Google Scholar 

  • Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott, 2009: Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Ra., 110, 844–878, doi: 10.1016/j.jqsrt.2009.02.035.

    Google Scholar 

  • Overpeck, J., D. Rind, A. Lacis, et al., 1996: Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature, 384, 447–449, doi: 10.1038/384447a0.

    Google Scholar 

  • P’ter, T. H., A. P. Barrett, C. C. Landry, et al., 2007: Impact of disturbed desert soils on duration of mount’ snow cover. Geophys. Res. Lett., 34, doi: 10.1029/2007gl030284.

  • —, J. S. Deems, J. Belnap, et al., 2010: Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl. Acad. Sci., 107, 17125–17130, doi: 10.1073/Pnas.0913139107.

    Google Scholar 

  • —, A. C. Bryant, and S. M. Skiles, 2012a: Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys. Res. Lett., 39, doi: 10.1029/2012gl052457.

  • —, S. M. Skiles, J. S. Deems, et al., 2012b: Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resour. Res., 48, doi: 10.1029/2012wr011985.

    Google Scholar 

  • Penner, J. E., R. E. Dickinson, and C. A. O’Neill, 1992: Effects of aerosol from biomass burning on the global radiation budget. Science, 256, 1432–1434.

    Google Scholar 

  • Petzold, A., C. Kopp, and R. Niessner, 1997: The dependence of the specific attenuation cross-section on black carbon mass fraction and particle size. Atmos. Environ., 31, 661–672, doi: 10.1016/S1352-2310(96)00245-2.

    Google Scholar 

  • Qian, Y., W. I. Gustafson, Jr., L. R. Leung, et al., 2009: Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations. J. Geophys. Res., 114, doi: 10.1029/2008jd011039.

  • —, M. G. Flanner, L. R. Leung, et al., 2011: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. Phys., 11, 1929–1948, doi: 10.5194/Acp-11-1929-2011.

    Google Scholar 

  • Qin, D. H., S. Y. Liu, and P. J. Li, 2006: Snow cover distribution, variability, and response to climate change in western China. J. Climate, 19, 1820–1833.

    Google Scholar 

  • Qiu, J., 2008: The third pole. Nature, 454, 393–396, doi: 10.1038/454393a.

    Google Scholar 

  • Quinn, P. K., T. S. Bates, E. Baum, et al., 2008: Shortlived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmos. Chem. Phys., 8, 1723–1735, doi: 10.5194/Acp-8-1723-2008.

    Google Scholar 

  • Rosen, H., T. Novakov, and B. A. Bodh’e, 1981: Soot in the Arctic. Atmos. Environ., 15, 1371–1374, doi: 10.1016/0004-6981(81)90343-7.

    Google Scholar 

  • Schwarz, J. P., R. S. Gao, D. W. Fahey, et al., 2006: Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res., 111(D16), doi: 10.1029/2006jd007076.

    Google Scholar 

  • —, J. R. Spackman, R. S. Gao, et al., 2010: The detection efficiency of the single particle soot photometer. Aerosol Sci. Technol., 44, 612–628, doi: 10.1080/02786826.2010.481298.

    Google Scholar 

  • —, S. J. Doherty, F. Li, et al., 2012: Assessing single particle soot photometer and integrating sphere/integrating sandwich spectrophotometer measurement techniques for quantifying black carbon concentration in snow. Atmos. Meas. Tech., 5, 2581–2592, doi: 10.5194/amt-5-2581-2012.

    Google Scholar 

  • —, R. S. Gao, A. E. Perring, et al., 2013: Black carbon aerosol size in snow. Sci. Rep., 3, 1356, doi: 10.1038/Srep01356.

    Google Scholar 

  • Shindell, D., and G. Faluvegi, 2009: Climate response to regional radiative forcing during the twentieth century. Nat. Geosci., 2, 294–300, doi: 10.1038/Ngeo473.

    Google Scholar 

  • Skiles, S. M., T. H. P’ter, J. S. Deems, et al., 2012: Dust radiative forcing in snow of the upper Colorado River basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resour. Res., 48, doi: 10.1029/2012wr011986.

  • Slowik, J. G., E. S. Cross, J.-H. Han, et al., 2007: An inter-comparison of instruments measuring black carbon content of soot particles. Aerosol Sci. Technol., 41, 295–314, doi: 10.1080/02786820701197078.

    Google Scholar 

  • Sokolik, I. N., and O. B. Toon, 1996: Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381, 681–683, doi: 10.1038/381681a0.

    Google Scholar 

  • Stephens, M., N. Turner, and J. Sandberg, 2003: Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl. Opt., 42, 3726–3736, doi: 10.1364/ao.42.003726.

    Google Scholar 

  • Stohl, A., 2006: Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res., 111(D11), doi: 10.1029/2005jd006888.

    Google Scholar 

  • Streets, D. G., S. Gupta, S. T. Waldhoff, et al., 2001: Black carbon emissions in China. Atmos. Environ., 35, 4281–4296, doi: 10.1016/S1352-2310(01)00179-0.

    Google Scholar 

  • Toon, O. B., C. P. Mckay, T. P. Ackerman, et al., 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94(D13), 16287–16301, doi: 10.1029/Jd094id13p16287.

    Google Scholar 

  • Wang, N. L., 2005: Decrease trend of dust event frequency over the past 200 years recorded in the Malan ice core from the northern Tibetan Plateau. Chinese Sci. Bull., 50, 2866–2871, doi: 10.1360/982005-237.

    Google Scholar 

  • —, T. D. Yao, J. C. Pu, et al., 2006a: Climatic and environmental changes over the last millennium recorded in the Malan ice core from the northern Tibetan Plateau. Sci. China (Ser. D), 49, 1079–1089, doi: 10.1007/S11430-006-1079-9.

    Google Scholar 

  • —, —, L. G. Thompson, et al., 2006b: Strong negative correlation between dust event frequency and air temperature over the northern Tibetan Plateau reflected by the Malan ice-core record. Ann. Glaciol., 43, 29–33, doi: 10.3189/172756406781812339.

    Google Scholar 

  • Wang, X., J. P. Huang, M. X. Ji, et al., 2008: Variability of East Asian dust events and their longterm trend. Atmos. Environ., 42, 3156–3165, doi: 10.1016/j.atmosenv.2007.07.046.

    Google Scholar 

  • —, J. P. Huang, R. D. Zhang, et al., 2010: Surface measurements of aerosol properties over northwest China during ARM China 2008 deployment. J. Geophys. Res., 115(D7), doi: 10.1029/2009jd013467.

    Google Scholar 

  • —, S. J. Doherty, and J. P. Huang, 2013: Black carbon and other light-absorbing impurities in snow across northern China. J. Geophys. Res., 118, 1471–1492, doi: 10.1029/2012jd018291.

    Google Scholar 

  • Wang, Z. W., C. A. Pedersen, X. S. Zhang, et al., 2013: Elemental carbon in snow at Changbai Mount’, northeastern China: Concentrations, scavenging ratios and dry deposition velocities. Atmos. Chem. Phys., 13, 14221–14248.

    Google Scholar 

  • Warren, S. G., and W. J. Wiscombe, 1980: A model for the spectral albedo of snow. II: Snow cont’ing atmospheric aerosols. J. Atmos. Sci., 37, 2734–2745.

    Google Scholar 

  • —, and —, 1985: Dirty snow after nuclear war. Nature, 313, 467–470, doi: 10.1038/313467a0.

    Google Scholar 

  • Wiscombe, W. J., and S. G. Warren, 1980: A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci., 37, 2712–2733.

    Google Scholar 

  • Xu, B. Q., T. D. Yao, X. Q. Liu, et al., 2006: Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau. Ann. Glaciol., 43, 257–262, doi: 10.3189/172756406781812122.

    Google Scholar 

  • —, J. J. Cao, J. Hansen, et al., 2009a: Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci., 106, 22114–22118, doi: 10.1073/pnas.0910444106.

    Google Scholar 

  • —, M. Wang, D. R. Joswiak, et al., 2009b: Deposition of anthropogenic aerosols in a southeastern Tibetan glacier. J. Geophys. Res., 114(D17), doi: 10.1029/2008jd011510.

    Google Scholar 

  • —, J. J. Cao, D. R. Joswiak, et al., 2012: Postdepositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers. Environ. Res. Lett., 7, 14022–14027, doi: 10.1088/1748-9326/7/1/014022.

    Google Scholar 

  • Yao, T. D., L. Thompson, W. Yang, et al., 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663–667, doi: 10.1038/Nclimate1580.

    Google Scholar 

  • Yao Tandong, Pu Jianchen, Tian Lide, et al., 2007: Recent rapid retreat of the Naimona’nyi Glacier in southwestern Tibetan Plateau. J. Glaciol. Geocryol., 29, 503–508. (in Chinese)

    Google Scholar 

  • Yasunari, T. J., 2011: What influences climate and glacier change in southwestern China? Environ. Res. Lett., 6, doi: 10.1088/1748-9326/6/4/041001.

  • —, P. Bonasoni, P. Laj, et al., 2010: Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory-Pyramid data and snow albedo changes over Himalayan glaciers. Atmos. Chem. Phys., 10, 6603–6615, doi: 10.5194/acp-10-6603-2010.

    Google Scholar 

  • Ye, H., R. D. Zhang, J. S. Shi, et al., 2012: Black carbon in seasonal snow across northern Xinjiang in northwestern China. Environ. Res. Lett., 7, doi: 10.1088/1748-9326/7/4/044002.

  • Zhang, R., D. A. Hegg, J. Huang, et al., 2013: Source attribution of insoluble light-absorbing particles in seasonal snow across northern China. Atmos. Chem. Phys., 13, 6091–6099, doi: 10.5194/acp-13-6091-2013.

    Google Scholar 

  • Zhang, X. Y., R. Arimoto, and Z. S. An, 1997: Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res., 102(D23), 28041–28047, doi: 10.1029/97jd02300.

    Google Scholar 

  • —, S. L. Gong, Z. X. Shen, et al., 2003: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations. J. Geophys. Res., 108(D9), 4261, doi: 10.1029/2002JD002632.

    Google Scholar 

  • Zhou, T., J. P. Huang, Z. W. Huang, et al., 2013: The depolarization-attenuated backscatter relationship for dust plumes. Opt. Express, 21, 15195–15204, doi: 10.1364/Oe.21.015195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang  (王 鑫).

Additional information

Supported by the National Natural Science Foundation of China (41175134 and 41105110) and Climate Change Special Funding of the China Meteorological Administration (2013–2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, B. & Ming, J. An overview of the studies on black carbon and mineral dust deposition in snow and ice cores in East Asia. J Meteorol Res 28, 354–370 (2014). https://doi.org/10.1007/s13351-014-4005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-4005-7

Key words

Navigation