Skip to main content
Log in

Chinese contribution to CMIP5: An overview of five Chinese models’ performances

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

An overview of Chinese contribution to Coupled Model Intercomparison Project-Phase 5 (CMIP5) is presented. The performances of five Chinese Climate/Earth System Models that participated in the CMIP5 project are assessed in the context of climate mean states, seasonal cycle, intraseasonal oscillation, interannual variability, interdecadal variability, global monsoon, Asian-Australian monsoon, 20th-century historical climate simulation, climate change projection, and climate sensitivity. Both the strengths and weaknesses of the models are evaluated. The models generally show reasonable performances in simulating sea surface temperature (SST) mean state, seasonal cycle, spatial patterns of Madden-Julian oscillation (MJO) amplitude and tropical cyclone Genesis Potential Index (GPI), global monsoon precipitation pattern, El Niño-Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO) related SST anomalies. However, the performances of the models in simulating the time periods, amplitude, and phase locking of ENSO, PDO time periods, GPI magnitude, MJO propagation, magnitude of SST seasonal cycle, northwestern Pacific monsoon and North American monsoon domains, as well as the skill of large-scale Asian monsoon precipitation need to be improved. The model performances in simulating the time evolution and spatial pattern of the 20th-century global warming and the future change under representative concentration pathways projection are compared to the multimodel ensemble of CMIP5 models. The model discrepancies in terms of climate sensitivity are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 global precipitation climatology project 11 (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorology, 4, 1147–1167.

    Article  Google Scholar 

  • Bao, Q., P. F. Lin, T. J. Zhou, et al., 2013: The flexible global Ocean-Atmosphere-Land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576, doi: 10.1007/s00376-012-2113-9.

    Article  Google Scholar 

  • Bellenger, H, E. Guilyardi, J. Leloup, et al., 2013: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 7–8, doi: 10.1007/s00382-013-1783-z.

    Google Scholar 

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.

    Article  Google Scholar 

  • Chen, X. L., T. J. Zhou, and Z. Guo, 2014: Climate sensitivities of two versions of FGOALS model to idealized radiative forcing. Sci. China Earth Sci., 57, 1363–1373, doi: 10.1007/s11430-013-4692-4.

    Article  Google Scholar 

  • Dee, D. P., S.M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.

    Article  Google Scholar 

  • Deser, C., M. A. Alexander, S.-P. Xie, et al., 2010: Sea surface temperature variability: Patterns and mechanisms. An. Rev. Mar. Sci., 2, 115–143.

    Article  Google Scholar 

  • Dong Lu and Zhou Tianjun, 2014: Contributions of natural and anthropogenic forcings to the twentieth-century Pacific sea surface temperature variability simulated by a climate system model. Acta Oceanologica Sinica, 36, 48–60. (in Chinese)

    Google Scholar 

  • Emanuel, K., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155.

    Article  Google Scholar 

  • Gregory, J. M., W. J. Ingram, M. A. Palmer, et al., 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi: 10.1029/2003GL018747.

    Google Scholar 

  • Guo, Z., and T. J. Zhou, 2013: Why does FGOALS-gl reproduce a weak Medieval Warm Period but a reasonable Little Ice Age and 20th century warming? Adv. Atmos. Sci., 30, 1758–1770, doi: 10.1007/s00376-013-2227-8.

    Article  Google Scholar 

  • Hansen, J., R. Ruedy, M. Sato, et al., 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi: 10.1029/2010RG000345.

    Article  Google Scholar 

  • He, B., Y. Liu, T. Zhou, et al., 2014: A preliminary diagnosis of high climate sensitivities simulated by FGOALS-s2 in CMIP5 Historical and RCP4.5 scenarios. Flexible Global Ocean-Atmosphere-Land System Model. Zhou T. J., Y. Q. Yu, Y. M. Liu, et al., Eds., Springer Press, 225–231.

    Chapter  Google Scholar 

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 1769–1786.

    Article  Google Scholar 

  • Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

    Article  Google Scholar 

  • Kitoh, A., H. Endo, K. K. Kumar, et al., 2013: Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res. Atmos., 118, doi: 10.1002/jgrd.50258.

  • Li, L., P. Lin, Y. Yu, et al., 2013: The flexible global ocean-atmosphere-land system model: Grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543–560, doi: 10.1007/s00376-012-2140-6.

    Article  Google Scholar 

  • Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013: Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases. Adv. Atmos. Sci., 30, 819–840.

    Article  Google Scholar 

  • Lin, R., T. Zhou, and Y. Qian, 2013: Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J. Climate, 27, 1271–1289, doi: 10.1175/JCLI-D-13-00215.1.

    Article  Google Scholar 

  • Lin Renping, Zhou Tianjun, Xue Feng, et al., 2012: The global monsoon variability revealed by NCEP/NCAR reanalysis data. Chinese J. Atmos. Sci., 36, 1027–1040. (in Chinese)

    Google Scholar 

  • Mantua, N., and S. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 35–44.

    Article  Google Scholar 

  • Meehl, G. A., G. J. Boer, C. Covey, et al., 1997: Intercomparison makes for a better climate model. Eos. Trans. Amer. Geophys. Union, 78, 445–451.

    Article  Google Scholar 

  • —, G. J. Boer, C. Covey, et al., 2000: The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteor. Soc., 81, 313–318.

    Article  Google Scholar 

  • —, C. Covey, B. McAvaney, et al., 2005: Overview of the Coupled Model Intercomparison Project. Bull. Amer. Meteor. Soc., 86, 89–93.

    Article  Google Scholar 

  • —, —, T. Delworth, et al., 2007a: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394, doi: 10.1175/BAMS-88-9-1383.

    Article  Google Scholar 

  • —, T. F. Stocker, W. D. Collins, et al., 2007b: Global Climate Projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Changes. Solomon, S., et al., Eds., Cambridge University Press, 747–845.

    Google Scholar 

  • Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 1154–1169.

    Article  Google Scholar 

  • Onogi, K., J. Tsutsui, H. Koide, et al., 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369–432.

    Article  Google Scholar 

  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

    Google Scholar 

  • Qian, C., and T. J. Zhou, 2013: Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010. J. Climate, 27, 1210–1222, doi: 10.1175/JCLI-D-13-00235.1.

    Article  Google Scholar 

  • Qiao, F. L., Z. Y. Song, Y. Bao, et al., 2013: Development and evaluation of an Earth System Model with surface gravity waves. J. Geophys. Res., 118, 4514–4524, doi: 10.1002/jgrc.20327.

    Article  Google Scholar 

  • Rasmusson, E., and T. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late 19th century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Song, F. F., and T. J. Zhou, 2013: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean-western Pacific anticyclone teleconnection. J. Climate, 27, 1679–1697, doi: 10.1175/JCLI-D-13-00248.1.

    Article  Google Scholar 

  • Sperber, K. R., H. Annamalai, I.-S. Kang, et al., 2013: Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744, doi: 10.1007/s00382-012-1607-6.

    Article  Google Scholar 

  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 3283–3287.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • Tian Fangxing, Zhou Tianjun, and Zhang Lixia, 2013: Tropical cyclone genesis potential index over the western North Pacific simulated by LASG/IAP AGCM. Acta Meteor. Sinica, 27, 50–62, doi: 10.1007/s13351-013-0106-y.

    Article  Google Scholar 

  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 3969–3993.

    Article  Google Scholar 

  • van Oldenborgh, G. J., M. Collins, J. M. Arblaster, et al., 2013: Annex I: Atlas of Global and Regional Climate Projections. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1311–1393.

    Google Scholar 

  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638.

    Article  Google Scholar 

  • —, and Q. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165–183.

    Article  Google Scholar 

  • —, Z. Wu, J. Li, et al., 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449–4463.

    Article  Google Scholar 

  • Wang Bin, Zhou Tianjun, Yu Yongqiang, et al., 2009: A view of earth system model development. Acta Meteor. Sinica, 23, 1–17.

    Article  Google Scholar 

  • Wu, B., and T. J. Zhou, 2013: Relationships between East Asian-western North Pacific monsoon and ENSO simulated by FGOALS-s2. Adv. Atmos. Sci., 30, 713–725, doi: 10.1007/s00376-013-2103-6.

    Article  Google Scholar 

  • Wu, T., R. Yu, F. Zhang, et al., 2010: The Beijing climate center for atmospheric general circulation model (BCC-AGCM2.0.1): Description and its performance for the present-day climate. Climate Dyn., 34, 123–147.

    Article  Google Scholar 

  • Wu Tongwen, Song Liancun, Li Weiping, et al., 2014: An overview of progress in climate system model development at the Beijing Climate Center applications for climate change studies. Acta Meteor. Sinica, 28, 34–56, doi: 10.1007/s13351-014-3041-7.

    Article  Google Scholar 

  • Wu Qizhong, Feng Jinming, Dong Wenjie, et al., 2013: Introduction of the CMIP5 experiments carried out by BNU-ESM. Adv. Climate Change Res., 9, 291–294, doi: 10.3969/j.issn.1673-1719.2013.04.008.

    Google Scholar 

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • —, J. E. Janowiak, P. A. Arkin, et al., 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 2197–2214.

    Article  Google Scholar 

  • Yu, Y., H. Zhi, B. Wang, et al., 2008: Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci., 25, 641–654.

    Article  Google Scholar 

  • —, J. He, W. P. Zheng, et al., 2013: Annual cycle and interannual variability in the tropical Pacific as simulated by three versions of FGOALS. Adv. Atmos. Sci., 30, 621–637.

    Article  Google Scholar 

  • Zhang Lixia, Zhou Tianjun, Wu Bo, et al., 2010: The annual modes of tropical precipitation simulated by the LASG/IAP coupled ocean-atmosphere model FGOALS_s1.1. Acta Meteor. Sinica, 24, 189–202.

    Article  Google Scholar 

  • —, and —, 2014: An assessment of improvements in global monsoon precipitation simulation in FGOALS-s2. Adv. Atmos. Sci., 31, 165–178, doi: 10.1007/s00376-013-2164-6.

    Article  Google Scholar 

  • Zhang, X., G. Shi, H. Liu, et al., 2000: IAP Global Ocean-Atmosphere-Land System Model. Science Press, Beijing, 251 pp.

    Google Scholar 

  • Zhou, T. J., and R. Yu, 2006: Twentieth century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 5843–5858.

    Article  Google Scholar 

  • —, Y. Yu, H. Liu, et al., 2007: Progress in the development and application of climate ocean models and ocean-atmosphere coupled models in China. Adv. Atmos. Sci., 24, 729–738.

    Article  Google Scholar 

  • —, B. Wu, X. Wen, et al., 2008a: A fast version of LASG/IAP climate system model and its 1000-year control integration. Adv. Atmos. Sci., 25, 655–672.

    Article  Google Scholar 

  • —, R. C. Yu, H. M. Li, et al., 2008b: Ocean forcing to changes in global monsoon precipitation over the recent half-century. J. Climate, 21, 3833–3852.

    Article  Google Scholar 

  • —, B. Wu, and B. Wang, 2009a: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon? J. Climate, 22, 1159–1173.

    Article  Google Scholar 

  • —, B. Wu, A. A. Scaife, et al., 2009b: The CLIVAR C20C Project: Which components of the Asian-Australian monsoon circulation variations are forced and reproducible? Climate Dyn., 33, 1051–1068.

    Article  Google Scholar 

  • —, D. Gong, J. Li, et al., 2009c: Detecting and understanding of multi-decadal variability of the East Asian summer monsoon-Recent progress and state of affairs. Meteorologische Zeitschrift, 18, 455–467.

    Article  Google Scholar 

  • —, B. Li, W. Man, et al., 2011: A comparison of the medieval warm period, little ice age and 20th-century warming simulated by the FGOALS Climate System Model. Chinese Sci. Bull., 56, 3028–3041.

    Article  Google Scholar 

  • —, F. Song, and X. L. Chen, 2013: Historical evolutions of global and regional surface air temperature simulated by FGOALS-s2 and FGOALS-g2: How reliable are the model results? Adv. Atmos. Sci., 30, 638–657, doi: 10.1007/s00376-013-2205-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Zhou  (周天军).

Additional information

Supported jointly by the National Natural Science Foundation of China (41125017 and 41330423), National (Key) Basic Research and Development (973) Program of China (2010CB951904), and Public Science and Technology Research Project Funds of Ocean (201105019-3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Chen, X., Dong, L. et al. Chinese contribution to CMIP5: An overview of five Chinese models’ performances. J Meteorol Res 28, 481–509 (2014). https://doi.org/10.1007/s13351-014-4001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-4001-y

Key words

Navigation