Skip to main content
Log in

Cloud parameters retrieved by the bispectral reflectance algorithm and associated applications

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Retrieval of cloud parameters is fundamental for descriptions of the cloud process in weather and cloud models, and is also the base for theoretical and applicational investigations on weather modification, aerosol-cloud-precipitation interaction, cloud-radiative climate effects, and so on. However, it is still difficult to obtain full information of cloud parameters over a wide area under the current level of science and technology. Luckily, parameters at the top of clouds can be retrieved with the satellite spectrum remote sensing, which is useful in obtaining global cloud properties. In this paper, cloud parameters retrieved by the bispectral reflectance (BSR) method and other methods developed on the basis of the BSR are briefly summarized. Recent advances in studies on the indirect effects of aerosol on cloud parameters are reviewed. The relationships among cloud parameters and precipitation intensity, type, and structure are elaborated on, based upon the pixel-level merged datasets derived from daily measurements of precipitation radar and visible and infrared scanner, together with cloud parameters retrieved by the BSR. It is revealed that cloud particle effective radius and liquid water path near cloud tops are effective to identify the thickness and intensity of convective precipitating clouds. Furthermore, the differences in cloud parameters and precipitation intensity for precipitating and non-precipitating clouds over land and ocean are compared in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.

    Article  Google Scholar 

  • Arking, A., and J. D. Childs, 1985: Retrieval of cloud cover parameters from multispectral images. J. Appl. Meteor., 24, 322–334.

    Article  Google Scholar 

  • Baum, B. A., R. F. Arduini, B. A. Wielicki, et al., 1994: Multilevel cloud retrieval using multispectral HIRS and AVHRR data: Nighttime oceanic analysis. J. Geophy. Res., 99, 5499–5514.

    Article  Google Scholar 

  • —, R. A. Frey, G. G. Mace, et al., 2003: Nighttime multilayered cloud detection using MODIS and ARM data. J. Appl. Meteor., 42, 905–919.

    Article  Google Scholar 

  • Chen, R., F. L. Chang, Z. Q. Li, et al., 2007: Impact of the vertical variation of cloud droplet size on the estimation of cloud liquid water path and rain detection. J. Atmos. Sci., 64, 3843–3853.

    Article  Google Scholar 

  • Chen Yingying, Zhou Yuquan, Mao Jietai, et al., 2007: Experimental research of the retrieval of cloud effective particle radius by FY-2C geostationary satellite data. Meteor. Mon., 33, 29–34. (in Chinese)

    Google Scholar 

  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, doi: 10.1029/2009JD012346.

  • Fu Yunfei, Liu Peng, Liu Qi, et al., 2011: Climatological characteristics of VIRS channels for precipitating cloud in summer over the tropics and subtropics. J. Atmos. Environ. Optics, 6, 129–140. (in Chinese)

    Google Scholar 

  • Givati, A., and D. Rosenfeld, 2004: Quantifying precipitation suppression due to air pollution. J. Appl. Meteor., 43, 1038–1056.

    Article  Google Scholar 

  • Guo Xueliang, Huang Meiyuan, Xu Huaying, et al., 1999: Rain category numerical simulations of microphysical processes of precipitation formation in stratiform clouds. Chinese J. Atmos. Sci., 23, 745–752. (in Chinese)

    Google Scholar 

  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Nearglobal survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465–497.

    Article  Google Scholar 

  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610.

    Article  Google Scholar 

  • Hu, Y. X., S. Rodier, K.-M. Xu, et al., 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, doi: 10.1029/2009JD012384.

  • Hu Zhijin, Qin Yu, and Wang Yubin, 1983: A numerical model of the cold stratified clouds. Acta Meteor. Sinica, 41, 194–203. (in Chinese)

    Google Scholar 

  • Huang, H. L., and G. R. Diak, 1992: Retrieval of non-precipitating liquid water cloud parameters from microwave data: A simulation study. J. Atmos. Oceanic Technol., 9, 354–363.

    Article  Google Scholar 

  • Huebert, B. J., T. Bates, P. B. Russell, et al., 2003: An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res., 108, doi: 10.1029/2003JD003550.

  • Inoue, T., and K. Aonashi, 2000: A comparison of cloud and rainfall information from instantaneous visible and infrared scanner and precipitation radar observations over a frontal zone in East Asia during June 1998. J. App. Meteor., 39, 2292–2301.

    Article  Google Scholar 

  • Jacob, D. J., J. H. Crawford, M. M. Kleb, et al., 2003: Transport and chemical evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results. J. Geophys. Res., 108, doi: 10.1029/2002JD003276.

  • Joiner, J., A. P. Vasilkov, P. K. Bhartia, et al., 2010: Detection of multi-layer and vertically-extended clouds using A-train sensors. Atmos. Meas. Tech., 3, 233–247.

    Article  Google Scholar 

  • Key, J. R., and J. M. Intrieri, 2000: Cloud particle phase determination with the AVHRR. J. Appl. Meteor., 39, 1797–1804.

    Article  Google Scholar 

  • King, M. D., Y. J. Kaufman, W. P. Menzel, et al., 1992: Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE. Trans. Geosci. Remote Sens., 30, 2–27.

    Article  Google Scholar 

  • Kiran, R., V., M. Rajeevan, S. V. B. Rao, et al., 2009: Analysis of variations of cloud and aerosol properties associated with active and break spells of Indian summer monsoon using MODIS data. Geophys. Res. Lett., 36, doi: 10.1029/2008GL037135.

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587–1606.

    Article  Google Scholar 

  • Koren, I., A. Orit, A. R. Lorraine, et al., 2012: Aerosol-induced intensification of rain from the tropics to the midlatitudes. Nature Geoscience, 5, 118–122.

    Article  Google Scholar 

  • Kubota, M, 1994: A new cloud detection algorithm for nighttime AVHRR/HRPT data. J. Oceanogr., 50, 31–41.

    Article  Google Scholar 

  • Kühnlein, M., T. Appelhans, B. Thies, et al., 2013: An evaluation of a semi-analytical cloud property retrieval using MSG SEVIRI, MODIS, and cloudsat. Atmos. Res., 122, 111–135.

    Article  Google Scholar 

  • Lei Hengchi, Hong Yanchao, Zhao Zhen, et al., 2008: Advances in cloud and precipitation physics and weather modification in recent years. Chinese J. Atmos. Sci., 32, 967–974. (in Chinese)

    Google Scholar 

  • Lensky, I. M., and D. Rosenfeld, 1997: Estimation of precipitation area and rain intensity based on the micro-physical properties retrieved from NOAA AVHRR data. J. Appl. Meteor., 36, 234–242.

    Article  Google Scholar 

  • —, and —, 2003: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds at nighttime. J. Appl. Meteor., 42, 1227–1233.

    Article  Google Scholar 

  • Li, Z. Q., H. Chen, M. Cribb, et al., 2007: Preface to special section on East Asian studies of tropospheric aerosols: An international regional experiment (EAST-AIRE). J. Geophys. Res., 112, doi: 10.1029/2007JD008853.

  • Li Yunying, Yu Rucong, Xu Youping, et al., 2003: The formation and diurnal changes of stratiform clouds in southern China. Acta Meteor. Sinica, 61, 733–743. (in Chinese)

    Google Scholar 

  • Liu, G., J. A. Curry, J. A. Haggerty, et al., 2001: Retrieval and characterization of cloud liquid water path using airborne passive microwave data during INDOEX. J. Geophys. Res., 106, 28719–28730.

    Article  Google Scholar 

  • Liu Hongli, Zhu Wenqin, Yi Shuhua, et al., 2003: Climatic analysis of the cloud over China. Acta Meteor. Sinica, 61, 466–473. (in Chinese)

    Google Scholar 

  • Liu Qi and Fu Yunfei, 2009: The climatological feature of diurnal variation of cloud amount over the tropics. J. Trop. Meteor., 25,717–724. (in Chinese)

    Google Scholar 

  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715–737.

    Article  Google Scholar 

  • Lowenthal, D. H., and R. D. Borys, 2000: Sources of microphysical variation in marine stratiform clouds in the North Atlantic. Geophys. Res. Lett., 27, 1491–1494.

    Article  Google Scholar 

  • Lynn, B., A. Khain, D. Rosenfeld, et al., 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, doi: 10.1029/2006JD007537.

  • MaKague, D., and K. F. Evans, 2002: Multichannel satellite retrieval of cloud parameter probability distribution functions. J. Atmos. Sci., 59, 1371–1382.

    Article  Google Scholar 

  • Masunaga, H., T. Y. Nakajima, T. Nakajima, et al., 2002: Physical properties of maritime low clouds as retrieved by combined use of tropical rainfall measurement mission microwave imager and visible/infrared scanner: Algorithm. J. Geophys. Res., 107, AAC 1-1-AAC 1–12.

    Google Scholar 

  • Meyer, K., and S. Platnick, 2010: Utilizing the MODIS 1.38 µm channel for cirrus cloud optical thickness retrievals: Algorithm and retrieval uncertainties. J. Geophys. Res., 115, doi: 10.1029/2010JD014872.

  • Min, Q. L., R. Li, B. Lin, et al., 2009: Evidence ofmineral dust altering cloud microphysics and precipitation. Atmos. Chem. Phys., 9, 3223–3231.

    Article  Google Scholar 

  • Minnis, P., P. W. Heck, D. F. Young, et al., 1992: Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during fire. J. Appl. Meteor., 31, 317–339.

    Article  Google Scholar 

  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 1878–1893.

    Article  Google Scholar 

  • —, —, J. D. Spinhirne, et al., 1991: Determination of the optical thickness and effective particle radius of clouds from reflectedsolar radiation measurements. Part II: Marine stratocumulus observations. J. Atmos. Sci., 48, 728–751.

    Article  Google Scholar 

  • —, and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for fire and ASTEX regions. J. Atmos. Sci., 52, 4043–4059.

    Article  Google Scholar 

  • —, M. Sekiguchi, T. Takemura, et al., 2003: Significance of direct and indirect radiative forcings of aerosols in the East China Sea region. J. Geophys. Res., 108, doi: 10.1029/2002JD003261.

  • Nauss, T., and A. A. Kokhanovsky, 2011: Retrieval of warm cloud optical properties using simple approximations. Remote Sens. Environ., 115, 1317–1325.

    Article  Google Scholar 

  • Ou, S. C., K. N. Liou, W. M. Gooch, et al., 1993: Remotesensing of cirrus cloud parameters using advanced very-high-resolution radiometer 3.7- and 10.9-µm channels. Appl. Opt., 32, 2171–2180.

    Article  Google Scholar 

  • Paldor, N., 2008: On the estimation of trends in annual rainfall using paired gauge observations. J. Appl. Meteor. Climatol., 47, 1814–1818.

    Article  Google Scholar 

  • Platnick, S., and F. P. J. Valero, 1995: A validation of a satellite cloud retrieval during ASTEX. J. Atmos. Sci., 52, 2985–3001.

    Article  Google Scholar 

  • —, M. D. King, S. A. Ackerman, et al., 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote. Sen., 44, 459–473.

    Article  Google Scholar 

  • Ramaswamy, V., O. Boucher, J. Haigh, et al., 2001: Radiative forcing of climate. Climate Change 2001: The Scientific Basis. Houghton, M., et al., Eds, Cambridge University Press, 349–416.

    Google Scholar 

  • Rao, N. X., S. C. Ou, and K. N. Liou, 1995: Removal of the solar component in AVHRR 3.7-µm radiances for the retrieval of cirrus cloud parameters. J. Appl. Meteor., 34, 482–499.

    Article  Google Scholar 

  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53, 497–519.

    Article  Google Scholar 

  • Remer, L. A., and Y. J. Kaufman, 2006: Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data. Atmos. Chem. Phys., 6, 237–253.

    Article  Google Scholar 

  • Rhoads, K. P., P. Kelley, R. R. Dickerson, et al., 1997: Composition of the troposphere over the Indian Ocean during the monsoonal transition. J. Geophys. Res., 102, 18981–18995.

    Article  Google Scholar 

  • Rosenfeld, D., and I. M. Lensky, 1989: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 2457–2477.

    Article  Google Scholar 

  • —, D. B. Wolff, and E. Amitai, 1994: The window probability matching method for rainfall measurements with radar. J. Appl. Meteor., 33, 682–693.

    Article  Google Scholar 

  • —, 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108.

    Article  Google Scholar 

  • —, E. Cattani, S. Melani, et al., 2004: Considerations on daylight operation of 1.6 versus 3.7-µm channel on NOAA and METOP satellites. Bull. Amer. Meteor. Soc., 85, 873–881.

    Article  Google Scholar 

  • —, Y. J. Kaufman, and I. Koren, 2006: Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols. Atmos. Chem. Phys., 6, 2503–2511.

    Article  Google Scholar 

  • —, J. Dai, X. Yu, et al., 2007: Inverse relations between amounts of air pollution and orographic precipitation. Science, 315, 1396–1398.

    Article  Google Scholar 

  • —, W. L. Woodley, A. Khain, et al., 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 987–1001.

    Article  Google Scholar 

  • Rossow, W. B., and L. C. Garder, 1993: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 6, 2341–2369.

    Article  Google Scholar 

  • —, and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2287.

    Article  Google Scholar 

  • Schiffer, R. A., and W. B. Rossow, 1983: The international satellite cloud climatology project (ISCCP)—the first project of the world climate research programme. Bull. Amer. Meteor. Soc., 64, 779–784.

    Google Scholar 

  • Seinfeld, J. H., G. R. Carmichael, R. Arimoto, et al., 2004: ACE-ASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Amer. Meteor. Soc., 85, 367–380.

    Article  Google Scholar 

  • Stephens, G. L., D. G. Vane, and R. J. Boain, 2002: The Cloudsat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 1771–1790.

    Article  Google Scholar 

  • Stone, R., G. L. Stephens, C. M. R. Platt, et al., 1990: The remote sensing of thin cirrus cloud using satellites, lidar and radiative transfer theory. J. Appl. Meteor., 29, 353–366.

    Article  Google Scholar 

  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8–12-µm data. J. Appl. Meteor., 33, 212–229.

    Article  Google Scholar 

  • Thorwald, H. M. S., J. Delanoe, and R. J. Hogan, 2011: A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat, CALIPSO, and MODIS. J. Appl. Meteor. Climatol., 50, 1952–1969.

    Article  Google Scholar 

  • Twomey, S. A., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152.

    Article  Google Scholar 

  • —, and K. J. Seton, 1980: Inferences of gross microphysical properties of clouds from spectral reflectance measurements. J. Atmos. Sci., 37, 1065–1069.

    Article  Google Scholar 

  • Van de Hulst, H. C., 1980: Multiple Light Scattering: Tables, Formulas, and Applications. Academic Press, 422 pp.

    Google Scholar 

  • Wang, C., P. Yang, B. A. Baum, et al., 2011: Retrieval of ice cloud optical thickness and effective particle size using a fast infrared radiative transfer model. J. Appl. Meteor. Climatol., 50, 2283–2297.

    Article  Google Scholar 

  • Wang, Y., G. Liu, E.-K. Seo, et al., 2013: Liquid water in snowing clouds: Implications for satellite remote sensing of snowfall. Atmos. Res., 131, 60–72.

    Article  Google Scholar 

  • Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 1397–1416.

    Article  Google Scholar 

  • Wielicki, B. A., J. T. Suttles, A. J. Heymsfield, et al., 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft. Mon. Wea. Rev., 118, 2356–2376.

    Article  Google Scholar 

  • Winker, D. M., J. Pelon, J. A. Coakley Jr, et al., 2010: The CALIPSO Mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 1211–1229.

    Article  Google Scholar 

  • Woodley, W. L., D. Rosenfeld, and A. Strautins, 2000: Identification of a seeding signature in Texas using multi-spectral satellite imagery. J. Wea. Modif., 32, 37–52.

    Google Scholar 

  • —, —, and B. A. Silverman, 2003: Results of on-top glaciogenic cloud seeding in Thailand. Part I: The demonstration experiment. J. Appl. Meteor., 42, 920–938.

    Article  Google Scholar 

  • Wu, D. L., S. A. Ackerman, R. Davies, et al., 2009: Vertical distributions and relationships of cloud occurrence frequency as observed by MISR, AIRS, MODIS, OMI, CALIPSO, and CloudSat. Geophys. Res. Lett., 36, doi: 10.1029/2009GL037464.

  • Xiao Hui, Xu Huaying, and Huang Meiyuan, 1988: Numerical simulation on the formation of cloud drop spectrum in cumulus. Part I: The function of the spectra and concentration of salt. Chinese J. Atmos. Sci., 12, 121–130. (in Chinese)

    Google Scholar 

  • Xin, J. Y., Y. S. Wang, Z. Q. Li, et al., 2007: Aerosol optical depth (AOD) and Ångström exponent of aerosols observed by the Chinese sun haze meternetwork from August 2004 to September 2005. J. Geophys. Res., 112, doi: 10.1029/2006JD007075.

  • Yang, J., P. Zhang, N. M. Lu, et al., 2012: Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. Int. J. Digital Earth, 5, 251–265.

    Article  Google Scholar 

  • Ye Jing, Li Wanbiao, and Yan Wei, 2009: Retrieval of the optical thickness and effective radius of multilayered cloud using MODIS data. Acta Meteor. Sinica, 67, 613–622. (in Chinese)

    Google Scholar 

  • Yu, H., Y. J. Kaufman, M. Chin, et al., 2006: A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 6, 613–666.

    Article  Google Scholar 

  • Zhang Peng, Yang Hu, Qiu Hong, et al., 2012a: Quantitative remote sensing from the current Fengyun 3 satellites. Adv. Meteor. Sci. Technol., 2, 6–11.

    Google Scholar 

  • —, Yang Jun, Dong Chaohua, et al., 2012b: General introduction on payloads, ground segment and data application of Fengyun 3A. Frontiers Earth Sci. China, 3, 367–373.

    Google Scholar 

  • Zhao, L., and F. Weng, 2002: Retrieval of ice cloud parameters using the advanced microwave sounding unit. J. Appl. Meteor., 41, 384–395.

    Article  Google Scholar 

  • Zheng Yuanyuan, Fu Yunfei, Liu Yong, et al., 2004: Heavy rainfall structures and lightning activities in a cold front cyclone in Huai River derived from TRMM PR and LIS observations. Acta Meteor. Sinica, 62, 790–813. (in Chinese)

    Google Scholar 

  • Zhou Jun, Lei Hengchi, Chen Hongbin, et al., 2010: Retrieval of cloud liquid water content distribution at vertical section for microwave radiometer using 2D tomography. Chinese J. Atmos. Sci., 34, 1011–1025. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Fu  (傅云飞).

Additional information

Supported by the Strategic Priority Research Program (XDA05100303), National (Key) Basic Research and Development (973) Program of China (2010CB428601), China Meteorological Administration Special Public Welfare Research Fund (GYHY201306077), and National Natural Science Foundation of China (41230419, 91337213, and 41205126).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y. Cloud parameters retrieved by the bispectral reflectance algorithm and associated applications. J Meteorol Res 28, 965–982 (2014). https://doi.org/10.1007/s13351-014-3292-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-3292-3

Key words

Navigation