Skip to main content
Log in

Lidar methods for observing mineral dust

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Lidar methods for observing mineral dust aerosols are reviewed. These methods include Mie scattering lidars, polarization lidars, Raman scattering lidars, high-spectral-resolution lidars, and fluorescence lidars. Some of the lidar systems developed by the authors and the results of the observations and applications are introduced. The largest advantage of the lidar methods is that they can observe vertical distribution of aerosols continuously with high temporal and spatial resolutions. Networks of ground-based lidars provide useful data for understanding the distribution and movement of mineral dust and other aerosols. The lidar network data are actually used for validation and assimilation of dust transport models, which can evaluate emission, transport, and deposition of mineral dust. The lidar methods are also useful for measuring the optical characteristics of aerosols that are essential to assess the radiative effects of aerosols. Evolution of the lidar data analysis methods for aerosol characterization is also reviewed. Observations from space and ground-based networks are two important approaches with the lidar methods in the studies of the effects of mineral dust and other aerosols on climate and the environment. Directions of the researches with lidar methods in the near future are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behrendt, A., and T. Nakamura, 2002: Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature. Opt. Express, 10, 805–817.

    Article  Google Scholar 

  • Bi, J. R., J. P. Huang, Q. Fu, et al., 2010: Toward characterization of the aerosol optical properties over Loess Plateau of northwestern China. J. Quant. Spectrosc. Radiat. Transf., 112, 346–360.

    Article  Google Scholar 

  • —, —, —, et al., 2012: Field measurement of clear-sky solar irradiance in Badain Jaran Desert of northwestern China. J. Quant. Spectrosc. Radiat. Transf., 122, 194–207.

    Article  Google Scholar 

  • Chen, B., J. Huang, P. Minnis, et al., 2010: Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements. Atmos. Chem. Phys., 10, 4241–4251.

    Article  Google Scholar 

  • Collis, R. T. H., and P. B. Russell, 1976: Lidar measurement of particles and gases by elastic backscattering and differential absorption. Laser Monitoring of the Atmosphere, Topics in Applied Physics, 14, 71–151.

    Article  Google Scholar 

  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652–653.

    Article  Google Scholar 

  • Gao Fei, Song Xiaoquan, Wang Yufeng, et al., 2009: Ultraviolet Raman lidar for high accurate profiling of aerosol extinction coefficient. Chinese Opt. Lett., 7, 95–97.

    Article  Google Scholar 

  • Hara, Y., I. Uno, K. Yumimoto, et al., 2008: Summertime Taklimakan dust structure. Geophys. Res. Lett., 35, L23801, doi: 10.1029/2008GL035630.

    Article  Google Scholar 

  • —, K. Yumimoto, I. Uno, et al., 2009: Asian dust outflow in the PBL and free atmosphere retrieved by NASA CALIPSO and an assimilated dust transport model. Atmos. Chem. Phys., 9, 1227–1239.

    Article  Google Scholar 

  • —, I. Uno, A. Shimizu, et al., 2011: Seasonal characteristics of spherical aerosol distribution in eastern Asia: Integrated analysis using ground/space-based lidars and a chemical transport model. SOLA, 7, 121–124, doi: 10.2151/sola.2011-031.

    Article  Google Scholar 

  • Hayasaka, T., S. Satake, A. Shimizu, et al., 2007: Vertical distribution and optical properties of aerosols observed over Japan during ABCEAREX2005. J. Geophys. Res., 112, D22S35, doi: 10.1029/2006JD008086.

    Google Scholar 

  • Hosteler, C. A., R. A. Ferrare, J. W. Hair, et al., 2012: Airborne multi-wavelength high spectral resolution lidar for process studies and assessment of future satellite remote sensing. AGU Fall Meeting, A13K-0336.

  • Hua, D., M. Uchida, and T. Kobayashi, 2004: Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere. Opt. Lett., 29, 1063–1065.

    Article  Google Scholar 

  • —, —, and —, 2005: UV Rayleigh-Mie lidar for daytime temperature profiling of the troposphere. Appl. Opt., 44, 1315–1322.

    Article  Google Scholar 

  • Huang, J. P., B. Lin, P. Minnis, et al., 2006: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, doi: 10.1029/2006GL026561.

  • —, P. Minnis, Y. H. Yi, et al., 2007: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, L18805, doi: 10.1029/2007GL029938.

    Article  Google Scholar 

  • —, Zhang Wu, Zuo Jinqing, et al., 2008a: An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv. Atmos. Sci., 25, 906–921.

    Article  Google Scholar 

  • —, P. Minnis, B. Chen, et al., 2008b: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, D23212, doi: 10.1029/2008JD010620.

    Article  Google Scholar 

  • —, —, H. Yan, et al., 2010: Dust aerosol effect on semiarid climate over Northwest China detected from ATrain satellite measurements. Atmos. Chem. Phys., 10, 6863–6872.

    Article  Google Scholar 

  • Huang, Z. W., N. Sugimoto, J. Huang, et al., 2010a: Comparison of depolarization ratio measurements with micro-pulse lidar and a linear polarization lidar in Lanzhou, China. Proc. 25th Int. Laser Radar Conf., St. Petersburg, Russia, 528–531.

    Google Scholar 

  • —, J. P. Huang, J. R. Bi, et al., 2010b: Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment. J. Geophys. Res., 115, D00K15, doi: 10.1029/2009JD013273.

    Google Scholar 

  • Kanatani, K. T., I. Ito, W. K. Al-Delaimy, et al., 2010: Desert-dust exposure is associated with increased risk of Asthma hospitalization in children. Am. J. Respir. Crit. Care Med., 182, 1475–1481, doi: 10.1164/rccm.201002-0296OC.

    Article  Google Scholar 

  • Kaneyasu, N., N. Sugimoto, A. Shimizu, et al., 2012: Comparison of lidar-derived dust extinction coefficients and the mass concentrations of surface aerosol. J. Japan. Soc. Atmos. Environ., 47, 285–291. (in Japanese)

    Google Scholar 

  • Kashima, S., T. Yorifuji, T. Tsuda, et al., 2012: Asian dust and daily all-cause or cause-specific mortality in western Japan. Occup. Environ. Med., 69, 908–915, doi: 10.1136/oemed-2012-100797.

    Article  Google Scholar 

  • Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt., 20, 211–220.

    Article  Google Scholar 

  • Liu Dong, Wang Zhien, Liu Zhaoyan, et al., 2008: A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res., 113(D16), doi: 10.1029/2007JD009776.

    Google Scholar 

  • Liu, X. G., J. Li, Y. Qu, et al., 2013: Formation and evolution mechanism of regional haze: A case study in the megacity Beijing, China. Atmos. Chem. Phys., 13, 4501–4514, doi: 10.5194/acp-13-4501-2013.

    Article  Google Scholar 

  • Liu, Z. Y., I. Matsui, and N. Sugimoto, 1999: Highspectral-resolution lidar using an iodine absorption filter for atmospheric measurements. Opt. Engineering, 38, 1661–1670.

    Article  Google Scholar 

  • —, N. Sugimoto, and T. Murayama, 2002: Extinctionto-backscatter ratio of Asian dust observed by high-spectral-resolution lidar and Raman lidar. Appl. Opt., 41, 2760–2767.

    Article  Google Scholar 

  • —, D. Liu, J. Huang, et al., 2008: Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys., 8, 5045–5060.

    Article  Google Scholar 

  • McGill, M., E. Welton, J. Yorks, et al., 2012: CATS: A new earth science capability. The Earth Observer, 24, 4–8.

    Google Scholar 

  • Mona, L., Z. Liu, D. Müller, et al., 2012: Lidar measurements for desert dust characterization: An overview. Adv. Meteor., 2012, 1–36, doi: 10.1155/2012/356265.

    Article  Google Scholar 

  • Müller, D., U. Wandinger, and A. Ansmann, 2000: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Experiment. Appl. Opt., 39, 1879–1892.

    Article  Google Scholar 

  • —, I. Mattis, B. Tatarov, et al., 2010a: Mineral quartz concentration measurements of mixed mineral dust/urban haze pollution plumes over Korea with multiwavelength aerosol Raman-quartz lidar. Geophys. Res. Lett., 37, L20810, doi: 10.1029/2010GL044633.

    Google Scholar 

  • —, A. Ansmann, V. Freudenthaler, et al., 2010b: Mineral dust observed with AERONET Sun photometer, Raman lidar, and in-situ measurements during SAMUM 2006: Shape-dependent particle properties. J. Geophys. Res., 115, D11207, doi: 10.1029/2009JD012523

    Article  Google Scholar 

  • —, I. Veselovskii, A. Kolgotin, et al., 2013: Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in-situ observations. Appl. Opt., 52, 3178–3202.

    Article  Google Scholar 

  • Murayama, T., H. Okamoto, N. Kaneyasu, et al., 1999: Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles. J. Geophys. Res., 104, 31781–31792.

    Article  Google Scholar 

  • Nishizawa, T., N. Sugimoto, I. Matsui, et al., 2008: Algorithm to retrieve aerosol optical properties from high-spectral-resolution lidar and polarization Mie-scattering lidar measurements. IEEE Trans. Geosci. Rem. Sens., 46, 4094–4103.

    Article  Google Scholar 

  • —, —, —, et al., 2010: Algorithms to retrieve optical properties of three-component aerosols from two-wavelength backscatter and one-wavelength polarization lidar measurements considering nonsphericity of dust. J. Quant. Spectrosc. Radiat. Transf., 112, 254–267, doi: 10.1016/j.jqsrt.2010.06.002.

    Article  Google Scholar 

  • —, N. Sugimoto, I. Matsui, et al., 2012: Development of two-wavelength high-spectral-resolution lidar and application to shipborne measurements. Proc. 26th Int. Laser Radar Conf., Porto Heli, Greece.

    Google Scholar 

  • —, A. Higurashi, N. Sugimoto, et al., 2013: Development of aerosol and cloud retrieval algorithms using ATLID and MSI data of EarthCARE. AIP Conf. Proc., 1531, 472, doi: 10.1063/1.4804809.

    Article  Google Scholar 

  • Onishi, K., S. Kurosaki, S. Otani, et al., 2012: Atmospheric transport route determines components of Asian dust and health effects in Japan. Atmospheric Environment, 49, 94–102, doi: 10.1016/j.atmosenv.2011.12.018.

    Article  Google Scholar 

  • Qiu Jinhuan and Sun Jinhui, 1994: Optically remote sensing of the dust storm and results analysis. Chinese J. Atmos. Sci., 18, 1–10, doi: 10.3878/j.issn.1006-9895. (in Chinese)

    Google Scholar 

  • Sakai, T., T. Nagai, M. Nakazato, et al., 2003: Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Appl. Opt., 42, 7103–7116.

    Article  Google Scholar 

  • Sasano, Y., and H. Nakane, 1984: Significance of the extinction/backscatter ratio and the boundary value term in the solution for the two-component lidar equation. Appl. Opt., 23, 11–13.

    Article  Google Scholar 

  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 1848–1866.

    Article  Google Scholar 

  • Sekiyama, T. T., T. Y. Tanaka, A. Shimizu, et al., 2010: Data assimilation of CALIPSO aerosol observations. Atmos. Chem. Phys., 10, 39–49.

    Article  Google Scholar 

  • She, C. Y., 2001: Spectral structure of laser light scattering revisted. Band widths of nonresonant scattering lidars. Appl. Opt., 40, 4875–4884.

    Google Scholar 

  • Shimizu, A., N. Sugimoto, I. Matsui, et al., 2004: Continuous observations of Asian dust and other aerosols by polarization lidar in China and Japan during ACE-Asia. J. Geophys. Res., 109, D19S17, doi: 10.1029/2002JD003253.

    Google Scholar 

  • —, —, and —, 2010: Detailed description of data processing system for lidar network in East Asia. Proc. 25th Int. Laser Radar Conf. St. Petersburg, Russia, 911–913.

    Google Scholar 

  • —, —, —, et al., 2011: Relationship between Lidarderived dust extinction coefficients and mass concentrations in Japan. SOLA, 7A, 1–4.

    Article  Google Scholar 

  • Spinhirne, J. D., 1993: Micro pulse lidar. IEEE Trans. Geosci. Rem. Sens., 31, 48–55.

    Article  Google Scholar 

  • Sugimoto, N., I. Matsui, A. Shimizu, et al., 2002: Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai. Geophys. Res. Lett., 29, doi: 10.1029/2002GL015112.

  • —, I. Uno, M. Nishikawa, et al., 2003: Record heavy Asian dust in Beijing in 2002: Observations and model analysis of recent events. Geophys. Res. Lett., 30, 1640, doi: 10.1029/2002GL016349.

    Article  Google Scholar 

  • —, I. Matsui, A. Shimizu, et al., 2008: Lidar network observations of troposheric aerosols. Proc. SPIE, 7860, 71530A, doi: 10.1117/12.806540.

    Article  Google Scholar 

  • —, Y. Hara, K. Yumimoto, et al., 2010: Dust emission estimated with an assimilated dust transport model using lidar network data and vegetation growth in the Gobi desert in Mongolia. SOLA, 6, 125–128, doi: 10.2151/sola.2010-032.

    Article  Google Scholar 

  • —, Y. Hara, A. Shimizu, et al., 2011: Comparison of surface observations and a regional dust transport model assimilated with lidar network data in Asian dust event of March 29 to April 2, 2007. SOLA 7A, 013–016, doi: 10.2151/sola.7A-004.

    Article  Google Scholar 

  • —, Z. Huang, T. Nishizawa, et al., 2012a: Fluorescence from atmospheric aerosols observed with a multi-channel lidar spectrometer. Opt. Express, 20, 20800–20807, doi: 10.1364/OE.20.020800.

    Article  Google Scholar 

  • —, —, —, et al., 2012b: Study of fluorescence of atmospheric aerosols using a lidar spectrometer. Proc. SPIE, 8526, 852607, doi: 10.1117/12.977177.

    Article  Google Scholar 

  • —, Y. Hara, A. Shimizu, et al., 2013: Analysis of dust events in 2008 and 2009 using the lidar network, surface observations and the CFORS model. Asia-Pacific J. Atmos. Sci., 49, 27–39.

    Article  Google Scholar 

  • Takeuchi, N., N. Sugimoto, H. Baba, et al., 1983: Random modulation CW lidar. Appl. Opt., 22, 1382–1386.

    Article  Google Scholar 

  • Tatarov, B., and N. Sugimoto, 2005: Estimation of quartz concentration in the tropospheric mineral aerosols using combined Raman and high-spectral-resolution lidars. Opt. Lett., 30, 3407–3409.

    Article  Google Scholar 

  • Ueda, K., A. Shimizu, H. Nitta, et al., 2012: Longrange transported Asian dust and emergency ambulance dispatches. Inhal. Toxicol., 24, 858–867, doi: 10.3109/08958378.2012.724729.

    Article  Google Scholar 

  • Uno, I., K. Yumimoto, A. Shimizu, et al., 2008: 3D structure of Asian dust transport revealed by CALIPSO and a 4DVAR dust model. Geophys. Res. Lett., 35, L06803, doi: 10.1029/2007GL032329.

    Google Scholar 

  • —, K. Eguchi, K. Yumimoto, et al., 2009: Asian dust transported one full circuit around the globe. Nature Geosci., 2, doi: 10.1038/NGEO583.

  • Wang, W. C., J. P. Huang, P. Minnis, et al., 2010: Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A-Train data during the Pacific Dust Experiment. J. Geophys. Res., 115, doi: 10.1029/2010JD014109.

  • Wang, X., S. J. Doherty, and J. P. Huang, 2013: Black carbon and other light-absorbing impurities in snow across northern China. J. Geophys. Res.-Atmos., 118, 1471–1492, doi: 10.1029/2012jd018291.

    Article  Google Scholar 

  • Wang, X., J. P. Huang, M. X. Ji, et al., 2008: Variability of East Asian dust events and their longterm trend. Atmos. Environ., 42, 3156–3165, doi: 10.1016/j.atmosenv.2007.07.046.

    Article  Google Scholar 

  • Wang, Y. F., D. X. Hua, J. D. Mao, et al., 2011: A detection of atmospheric relative humidity profile by UV Raman lidar. J. Quant. Spectrosc. Radiat. Transf., 112, 214–219, doi: 10.1016/j.jqsrt.

    Article  Google Scholar 

  • Welton, E. J., J. R. Campbel, J. D. Spinhirnec, et al., 2001: Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems. Proc. SPIE, 4153, 151–158.

    Article  Google Scholar 

  • Xia, X. A., and X. M. Zong, 2009: Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols. Geophys. Res. Lett., 36, L07803, doi: 10.1029/2009GL037237.

    Google Scholar 

  • Xie, C. B., T. Nishizawa, N. Sugimoto, et al., 2008: Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China. Appl. Opt., 47, 4945–4951.

    Article  Google Scholar 

  • Yumimoto, K., I. Uno, N. Sugimoto, et al., 2007: Adjoint inverse modeling of dust emission and transport over East Asia. Geophys. Res. Lett., 34, L08806, doi: 10.1029/2006GL028551.

    Google Scholar 

  • —, —, —, et al., 2008: Adjoint inversion modeling of Asian dust emission using lidar observations. Atmos. Chem. Phys., 8, 2869–2884.

    Article  Google Scholar 

  • —, —, —, et al., 2012: Size-resolved adjoint inversion of Asian dust. Geophys. Res. Lett., 39, L24807, doi: 10.1029/2012GL053890.

    Google Scholar 

  • Zhou, J., G. M. Yu, C. J. Jin, et al., 2002: Lidar observations of Asian Dust over Hefei, China, in Spring of 2000. J. Geophys. Res., 107, doi: 10.1029/2001JD000802.

  • Zhou, T., J. P. Huang, Z. W. Huang, et al., 2013: The depolarization-attenuated backscatter relationship for dust plumes. Opt. Express, 21, 15195–15204, doi: 10.1364/OE.21.015195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Sugimoto.

Additional information

Supported by the National Natural Science Foundation of China (41205014 and 41375031) and Fundamental Research Funds for the Central Universities (lzujbky-2013-106).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, N., Huang, Z. Lidar methods for observing mineral dust. J Meteorol Res 28, 173–184 (2014). https://doi.org/10.1007/s13351-014-3068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-3068-9

Key words

Navigation